cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006872 Numbers k such that phi(k) = phi(sigma(k)).

Original entry on oeis.org

1, 3, 15, 26, 39, 45, 74, 104, 111, 117, 122, 146, 175, 183, 195, 219, 296, 314, 333, 357, 386, 471, 488, 549, 554, 555, 579, 584, 585, 608, 626, 646, 657, 794, 831, 842, 914, 915, 939, 962, 1071, 1082, 1095, 1191, 1226, 1256, 1263, 1292, 1322, 1346
Offset: 1

Views

Author

Keywords

References

  • S. W. Golomb, Equality among number-theoretic functions, Abstract 882-11-16, Abstracts Amer. Math. Soc., 14 (1993), 415-416.
  • R. K. Guy, Unsolved Problems in Number Theory, B42.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000010, A000203, A062401, A353637 (characteristic function).
Positions of zeros in A353636.
Setwise difference of A353684 and A353683, and also of A353685 and A353686.
Intersection of A353684 and A353685.
Subsequences: A260021, A353634, A353635, A353679 (odd terms).

Programs

  • Haskell
    a006872 n = a006872_list !! (n-1)
    a006872_list = filter (\x -> a000010' x == a000010' (a000203' x)) [1..]
    -- Reinhard Zumkeller, Jul 14 2015
    
  • Magma
    [n:n in [1..2000]| EulerPhi(SumOfDivisors(n)) eq EulerPhi(n)]; // Marius A. Burtea, Jan 01 2019
  • Mathematica
    Select[Range@ 1350, EulerPhi@ # == EulerPhi@ DivisorSigma[1, #] &] (* Michael De Vlieger, Jan 01 2019 *)
  • PARI
    lista(nn) = {for (i=1, nn, if (eulerphi(i)==eulerphi(sigma(i)), print1(i, ", ")););} \\ Michel Marcus, May 25 2013
    

Extensions

More terms from Jud McCranie

A353635 Numbers k such that phi(k) = phi(sigma(k)) and A003958(k) = A003958(sigma(k)).

Original entry on oeis.org

1, 26, 74, 122, 146, 314, 386, 554, 626, 794, 842, 914, 1082, 1226, 1322, 1346, 1466, 1514, 1754, 1994, 2186, 2306, 2402, 2426, 2474, 2642, 2762, 2906, 3242, 3314, 3506, 3746, 3866, 3986, 4034, 4274, 4682, 4946, 5114, 5186, 5594, 5714, 5834, 6122, 6434, 6506, 6626, 7034, 7466, 8042, 8114, 8354, 8522, 8546, 8714, 8882
Offset: 1

Views

Author

Antti Karttunen, May 04 2022

Keywords

Comments

Question 1: Are there any odd terms after the initial 1?
Interestingly, most of the terms seem to belong to a set where the abundancy index (ratio sigma(n)/n) converges towards 3/2. But there are exceptions, see A353634 for example.

Crossrefs

Intersection of A006872 and A351446. A353634 lists the nondeficient terms.

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    isA353635(n) = { my(s=sigma(n)); ((eulerphi(s)==eulerphi(n)) && (A003958(s)==A003958(n))); };
Showing 1-2 of 2 results.