cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A351493 Expansion of e.g.f. (1 - x)^(-x^3/6).

Original entry on oeis.org

1, 0, 0, 0, 4, 10, 40, 210, 1904, 15120, 132600, 1293600, 14303520, 171531360, 2223464880, 31023392400, 464541960960, 7424367350400, 126124766476800, 2269425252931200, 43119553374460800, 862673918061715200, 18126931548822835200, 399119899456951411200
Offset: 0

Views

Author

Seiichi Manyama, May 02 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)^(-x^3/6)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x^3/6*log(1-x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/6*sum(j=4, i, j/(j-3)*v[i-j+1]/(i-j)!)); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\4, abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));

Formula

a(0) = 1; a(n) = (n-1)!/6 * Sum_{k=4..n} k/(k-3) * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/4)} |Stirling1(n-3*k,k)|/(6^k * (n-3*k)!).
a(n) ~ sqrt(2*Pi) * n^(n - 1/3) / (Gamma(1/6) * exp(n)). - Vaclav Kotesovec, May 04 2022

A351505 Expansion of e.g.f. 1/(1 + x^2/2 * log(1 - x)).

Original entry on oeis.org

1, 0, 0, 3, 6, 20, 270, 1764, 12600, 146880, 1597680, 17934840, 243777600, 3506518080, 52696595952, 870564618000, 15354480960000, 284780747946240, 5622461683666560, 117425971162442880, 2574172644658272000, 59302473667128599040, 1432738540209781728000
Offset: 0

Views

Author

Seiichi Manyama, May 04 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x^2/2*log(1-x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!/2*sum(j=3, i, 1/(j-2)*v[i-j+1]/(i-j)!)); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\3, k!*abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!));

Formula

a(0) = 1; a(n) = n!/2 * Sum_{k=3..n} 1/(k-2) * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/3)} k! * |Stirling1(n-2*k,k)|/(2^k * (n-2*k)!).

A353228 Expansion of e.g.f. (1 - x)^(-x^2).

Original entry on oeis.org

1, 0, 0, 6, 12, 40, 540, 3528, 25200, 263520, 2741760, 30048480, 372794400, 4971957120, 70612686144, 1076056027200, 17469796780800, 300562292459520, 5468568356666880, 104917700221125120, 2116572758902425600, 44794683422986936320, 992435268252158438400
Offset: 0

Views

Author

Seiichi Manyama, May 01 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1-x)^(-x^2), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 12 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)^(-x^2)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x^2*log(1-x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=3, i, j/(j-2)*v[i-j+1]/(i-j)!)); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\3, abs(stirling(n-2*k, k, 1))/(n-2*k)!);

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=3..n} k/(k-2) * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/3)} |Stirling1(n-2*k,k)|/(n-2*k)!.
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / exp(n). - Vaclav Kotesovec, May 04 2022

A355610 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. (1 - x)^(-x^k/k!).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 2, 6, 1, 0, 0, 3, 24, 1, 0, 0, 3, 20, 120, 1, 0, 0, 0, 6, 90, 720, 1, 0, 0, 0, 4, 20, 594, 5040, 1, 0, 0, 0, 0, 10, 180, 4200, 40320, 1, 0, 0, 0, 0, 5, 40, 1134, 34544, 362880, 1, 0, 0, 0, 0, 0, 15, 210, 7980, 316008, 3628800, 1, 0, 0, 0, 0, 0, 6, 70, 1904, 71280, 3207240, 39916800
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2022

Keywords

Examples

			Square array begins:
    1,   1,   1,  1,  1, 1, 1, ...
    1,   0,   0,  0,  0, 0, 0, ...
    2,   2,   0,  0,  0, 0, 0, ...
    6,   3,   3,  0,  0, 0, 0, ...
   24,  20,   6,  4,  0, 0, 0, ...
  120,  90,  20, 10,  5, 0, 0, ...
  720, 594, 180, 40, 15, 6, 0, ...
		

Crossrefs

Columns k=0..4 give A000142, A066166, A351492, A351493, A355507.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\(k+1), abs(stirling(n-k*j, j, 1))/(k!^j*(n-k*j)!));

Formula

T(0,k) = 1 and T(n,k) = (n-1)!/k! * Sum_{j=k+1..n} j/(j-k) * T(n-j,k)/(n-j)! for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} |Stirling1(n-k*j,j)|/(k!^j * (n-k*j)!).

A354000 Expansion of e.g.f. exp(x^2/2 * (exp(x) - 1)).

Original entry on oeis.org

1, 0, 0, 3, 6, 10, 105, 651, 2968, 18936, 152505, 1164295, 9109056, 80012868, 756041377, 7387199925, 75535791360, 816560002576, 9254683835073, 109135702334619, 1338613513677280, 17079079303721820, 226148006163689841, 3100114305453613393, 43935964285680790368
Offset: 0

Views

Author

Seiichi Manyama, May 13 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2/2*(exp(x)-1))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/2*sum(j=3, i, j/(j-2)!*v[i-j+1]/(i-j)!)); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));

Formula

a(0) = 1; a(n) = ((n-1)!/2) * Sum_{k=3..n} k/(k-2)! * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/3)} Stirling2(n-2*k,k)/(2^k * (n-2*k)!).

A356752 E.g.f. satisfies A(x) = 1/(1 - x)^(x^2/2 * A(x)).

Original entry on oeis.org

1, 0, 0, 3, 6, 20, 360, 2394, 17220, 260280, 3076920, 35980560, 595686960, 9760411440, 159321570408, 3093987619800, 63314740616400, 1318245318411840, 30240056863978560, 736919729169603840, 18522487833889334400, 495842871278901363840, 14014346231616983128800
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[_] = 1;
    Do[A[x_] = 1/(1 - x)^(x^2/2*A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, (k+1)^(k-1)*abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(-x^2/2*log(1-x))^k/k!)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(x^2/2*log(1-x)))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x^2/2*log(1-x))/(x^2/2*log(1-x))))

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) * |Stirling1(n-2*k,k)|/(2^k * (n-2*k)!).
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (-x^2/2 * log(1-x))^k / k!.
E.g.f.: A(x) = exp( -LambertW(x^2/2 * log(1-x)) ).
E.g.f.: A(x) = LambertW(x^2/2 * log(1-x))/(x^2/2 * log(1-x)).

A356912 E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^(x^2/2).

Original entry on oeis.org

1, 0, 0, 3, 6, 20, 0, -126, -1260, 18360, 335160, 4546080, 26302320, -59501520, -5703994296, -58549768200, 371346066000, 34962417322560, 746101280831040, 8059680118183680, -93772611412099200, -5613314502242643840, -110940169654432087200
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[_] = 1;
    Do[A[x_] = ((1 - x)^(-x^2/2))^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, (-k+1)^(k-1)*abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-x^2/2*log(1-x))^k/k!)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-x^2/2*log(1-x)))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-x^2/2*log(1-x)/lambertw(-x^2/2*log(1-x))))

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (-k+1)^(k-1) * |Stirling1(n-2*k,k)|/(2^k * (n-2*k)!).
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (-x^2/2 * log(1-x))^k / k!.
E.g.f.: A(x) = exp( LambertW(-x^2/2 * log(1-x)) ).
E.g.f.: A(x) = -x^2/2 * log(1-x)/LambertW(-x^2/2 * log(1-x)).
Showing 1-7 of 7 results.