cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228058 Odd numbers of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1. (Euler's criteria for odd perfect numbers).

Original entry on oeis.org

45, 117, 153, 245, 261, 325, 333, 369, 405, 425, 477, 549, 605, 637, 657, 725, 801, 833, 845, 873, 909, 925, 981, 1017, 1025, 1053, 1233, 1325, 1341, 1377, 1413, 1421, 1445, 1525, 1557, 1573, 1629, 1737, 1773, 1805, 1813, 1825, 2009, 2057, 2061, 2097, 2169
Offset: 1

Views

Author

T. D. Noe, Aug 13 2013

Keywords

Comments

It has been proved that if an odd perfect number exists, it belongs to this sequence. The first term of the form p^5 * n^2 is 28125 = 5^5 * 3^2, occurring in position 520.
Sequence A228059 lists the subsequence of these numbers that are closer to being perfect than smaller numbers. - T. D. Noe, Aug 15 2013
Sequence A326137 lists terms with at least five distinct prime factors. See further comments there. - Antti Karttunen, Jun 13 2019

Crossrefs

Subsequence of A191218, and also of A228056 and A228057 (simpler versions of this sequence).
For various subsequences with additional conditions, see A228059, A325376, A325380, A325822, A326137 (with omega(n)>=5), A324898 (conjectured, subsequence if it does not contain any prime powers), A354362, A386425 (conjectured), A386427 (nondeficient terms), A386428 (powerful terms), A386429 U A351574.

Programs

  • Haskell
    import Data.List (partition)
    a228058 n = a228058_list !! (n-1)
    a228058_list = filter f [1, 3 ..] where
       f x = length us == 1 && not (null vs) &&
             fst (head us) `mod` 4 == 1 && snd (head us) `mod` 4 == 1
             where (us,vs) = partition (odd . snd) $
                             zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Aug 14 2013
    
  • Mathematica
    nn = 100; n = 1; t = {}; While[Length[t] < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1,1]]]], 4] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Aug 15 2013 *)
  • PARI
    up_to = 1000;
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    A228058list(up_to) = { my(v=vector(up_to), k=0, n=0); while(kA228058(n), k++; v[k] = n)); (v); };
    v228058 = A228058list(up_to);
    A228058(n) = v228058[n]; \\ Antti Karttunen, Apr 22 2019

Formula

From Antti Karttunen, Apr 22 2019 & Jun 03 2019: (Start)
A325313(a(n)) = -A325319(n).
A325314(a(n)) = -A325320(n).
A001065(a(n)) = A325377(n).
A033879(a(n)) = A325379(n).
A034460(a(n)) = A325823(n).
A325814(a(n)) = A325824(n).
A324213(a(n)) = A325819(n).
(End)

Extensions

Note in parentheses added to the definition by Antti Karttunen, Jun 03 2019

A347874 Odd composites for which A342926(n) is even and A342926(2*n) is a multiple of 3.

Original entry on oeis.org

45, 153, 261, 325, 369, 405, 441, 477, 801, 909, 925, 1017, 1233, 1341, 1377, 1521, 1525, 1557, 1573, 1773, 1825, 2097, 2205, 2313, 2349, 2401, 2421, 2425, 2529, 2637, 2725, 2853, 3177, 3249, 3321, 3501, 3609, 3645, 3757, 3825, 3925, 4041, 4149, 4293, 4477, 4525, 4581, 4689, 4825, 5013, 5121, 5337, 5445, 5553, 5725
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2021

Keywords

Comments

Numbers k for which A347871(k) = 0 and A347883(2*k) = 0.
This is not a subsequence of A228058. The terms that do not occur there: 441, 1521, 2401, 3249, 8649, 16641, 28561, 35721, etc., seem all to be squares. Terms of A228058 missing from this sequence are: 117, 245, 333, 425, 549, 605, 637, 657, 725, etc. (See A351574.) Terms that are also in A228058 are given in A386429.

Crossrefs

Intersection of A347872 and A351562.

Programs

  • Mathematica
    ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); f[n_] := ad[DivisorSigma[1, n]] - n; Select[Range[1, 5725, 2], CompositeQ[#] && EvenQ[f[#]] && Divisible[f[2*#], 3] &] (* Amiram Eldar, Sep 18 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342926(n) = (A003415(sigma(n))-n);
    isA347874(n) = ((n%2)&&!isprime(n)&&!(A342926(n)%2)&&!(A342926(2*n)%3));

A386429 Odd composites k such that A342926(k) is even and A342926(2*k) is a multiple of 3 and which satisfy Euler's condition for odd perfect numbers (A228058).

Original entry on oeis.org

45, 153, 261, 325, 369, 405, 477, 801, 909, 925, 1017, 1233, 1341, 1377, 1525, 1557, 1573, 1773, 1825, 2097, 2205, 2313, 2349, 2421, 2425, 2529, 2637, 2725, 2853, 3177, 3321, 3501, 3609, 3645, 3757, 3825, 3925, 4041, 4149, 4293, 4477, 4525, 4581, 4689, 4825, 5013, 5121, 5337, 5445, 5553, 5725, 5733, 5769, 5877, 6025
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2025

Keywords

Comments

Sequence contains also some terms of A386428: 28125, 253125, 1378125, 2278125, 3341637, 3403125, 4753125, etc.

Crossrefs

Intersection of A228058 and A347874.
Conjectured to be also the intersection of A228058 and A349751.
Setwise difference A228058 \ A351574.
Cf. also A349755, A387162.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342926(n) = (A003415(sigma(n))-n);
    isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));
    isA347874(n) = ((n%2)&&!isprime(n)&&!(A342926(n)%2)&&!(A342926(2*n)%3));
    isA386429(n) = (isA228058(n) && isA347874(n));
Showing 1-3 of 3 results.