A351580 a(n) is the number of multisets of size n-1 consisting of permutations of n elements.
1, 2, 21, 2600, 9078630, 1634935320144, 22831938997720867560, 34390564970975286088924022400, 7457911916650283082000186530740981347120, 300682790088737748950725540713718365319268411170195200, 2830053444386286847574443631356044745870287426798365860653876609636480
Offset: 1
Keywords
Examples
Starting with the following men's ranking table of order 3, where row k represents man k's rankings, the 1 in the 2nd position of row 3 means that man #3 ranks woman #2 as his 1st choice. 213 321 213 Step 1: reorder columns so row 1 is in natural order: 123 231 123 Step 2: reorder rows 2 to n so rows are in lexical order: 123 123 231 a(3)=21 because there are 1+2+3+4+5+6 = 21 possibilities for the last two rows in lexical order, with 3!=6 possible permutations for each row. The 21 tables for a(3) are the following: 123 123 123 123 123 123 123 123 123 123 123 123 123 132 123 132 213 231 312 321 132 . 123 123 123 123 123 123 123 132 132 132 132 213 213 213 213 231 312 321 213 231 312 . 123 123 123 123 123 123 123 213 231 231 231 312 312 321 321 231 312 321 312 321 321
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..31
- Wikipedia, Counting multisets
Programs
-
Mathematica
Table[Binomial[n!+n-2,n-1],{n,15}] (* Harvey P. Dale, Jun 02 2023 *)
-
PARI
a(n) = binomial(n! + n - 2, n - 1) \\ Andrew Howroyd, Feb 13 2022
Formula
a(n) = binomial(n! + n - 2, n - 1).
a(n) = A344690*n/(n! + n - 1).
a(n) = A071919(n-1,n!). - Alois P. Heinz, Feb 16 2022
Extensions
Erroneous Mathematica program deleted by N. J. A. Sloane, Jun 02 2023
Comments