A351647 Sum of the squares of the odd proper divisors of n.
0, 1, 1, 1, 1, 10, 1, 1, 10, 26, 1, 10, 1, 50, 35, 1, 1, 91, 1, 26, 59, 122, 1, 10, 26, 170, 91, 50, 1, 260, 1, 1, 131, 290, 75, 91, 1, 362, 179, 26, 1, 500, 1, 122, 341, 530, 1, 10, 50, 651, 299, 170, 1, 820, 147, 50, 371, 842, 1, 260, 1, 962, 581, 1, 195, 1220, 1, 290
Offset: 1
Examples
a(10) = 26; a(10) = Sum_{d|10, d<10, d odd} d^2 = 1^2 + 5^2 = 26.
Links
Crossrefs
Programs
-
Mathematica
f[2, e_] := 1; f[p_, e_] := (p^(2*e+2) - 1)/(p^2 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^2, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)
-
PARI
a(n) = sumdiv(n, d, if ((d%2) && (d
Michel Marcus, Mar 02 2022
Formula
a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^2 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)-1)/6 = 0.0336761505... . (End)