cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351647 Sum of the squares of the odd proper divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 10, 1, 1, 10, 26, 1, 10, 1, 50, 35, 1, 1, 91, 1, 26, 59, 122, 1, 10, 26, 170, 91, 50, 1, 260, 1, 1, 131, 290, 75, 91, 1, 362, 179, 26, 1, 500, 1, 122, 341, 530, 1, 10, 50, 651, 299, 170, 1, 820, 147, 50, 371, 842, 1, 260, 1, 962, 581, 1, 195, 1220, 1, 290
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 26; a(10) = Sum_{d|10, d<10, d odd} d^2 = 1^2 + 5^2 = 26.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), this sequence (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(2*e+2) - 1)/(p^2 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^2, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if ((d%2) && (dMichel Marcus, Mar 02 2022

Formula

a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^2 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
a(n) = A050999(n) - n^2*A000035(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)-1)/6 = 0.0336761505... . (End)