A351699
T(n,k) is the number of non-congruent maximal subsets of a grid of n X k lattice points (k <= n), such that no two points are at the same distance, and the points do not fit into a smaller grid. The size of the subsets is given by A351700. T(n,k) and A351700 are triangles read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 5, 10, 1, 5, 28, 7, 21, 2, 19, 8, 104, 330, 2, 1, 4, 70, 15, 110, 574, 1, 3, 30, 272, 205, 4, 71, 563, 1991, 4, 68, 50, 1001, 113, 1130, 4, 76, 383, 9, 8, 362, 35, 1150, 23, 363, 3975, 7, 38, 8, 18, 1082, 415, 2, 638, 7503, 23, 515, 5802, 2, 2, 150, 62, 4238, 120, 1, 55, 1776, 17277, 26, 481, 2388
Offset: 1
The triangle begins:
#
# 1: 1 Counting grids n X k.
( 1 ) Two lines per side length n:
# 2: 2 2 1. for other side k = 1, 2, ...
( 1 1 ) maximal number of points
# 3: 2 3 3 2. number of configurations
( 1 2 1 )
# 4: 3 4 4 4 Example: 28 figures with
( 1 1 5 10 ) 4 points on 5 X 3
# 5: 3 4 4 5 5
( 1 5 28 7 21 )
# 6: 3 4 5 5 5 6
( 2 19 8 104 330 2 )
# 7: 4 5 5 6 6 6 7
( 1 4 70 15 110 574 1 )
# 8: 4 5 5 6 7 7 7 7
( 3 30 272 205 4 71 563 1991 )
# 9: 4 5 6 6 7 7 8 8 8
( 4 68 50 1001 113 1130 4 76 383 )
#10: 4 6 6 7 7 8 8 8 9 9
( 9 8 362 35 1150 23 363 3975 7 38 )
#11: 4 6 6 7 8 8 8 9 9 9 10
( 8 18 1082 415 2 638 7503 23 515 5802 2 )
#
# Grid n X k configurations with
# distinct distances
.
.
All T(6,3) = 8 configurations
0 1 2 3 4 5 0 1 2 3 4 5
------------------- -------------------
2 | . X X . X . 2 | . . . . X .
1 | . . . . . X 1 | . . . . . X
0 | X . . . . . 0 | X . X . . X
y /------------------- y /-------------------
x 0 1 2 3 4 5 x 0 1 2 3 4 5
{1,2,4,5,8,9,10,17,20,26} dist^2 {1,2,4,5,8,9,10,20,25,26}
0 1 2 3 4 5 0 1 2 3 4 5
------------------- -------------------
2 | . . X . X . 2 | . X . X . .
1 | . . . . . X 1 | X . . . . .
0 | X X . . . . 0 | X . . . . X
y /------------------- y /-------------------
x 0 1 2 3 4 5 x 0 1 2 3 4 5
{1,2,4,5,8,10,13,17,20,26} dist^2 {1,2,4,5,8,10,13,20,25,26}
0 1 2 3 4 5 0 1 2 3 4 5
------------------- -------------------
2 | . . . . X . 2 | . . X . X .
1 | X . . . . X 1 | X . . . . X
0 | X . X . . . 0 | X . . . . .
y /------------------- y /-------------------
x 0 1 2 3 4 5 x 0 1 2 3 4 5
{1,2,4,5,8,10,17,20,25,26} dist^2 {1,2,4,5,8,10,17,20,25,26}
0 1 2 3 4 5 0 1 2 3 4 5
------------------- -------------------
2 | . . X . . X 2 | X . . . . X
1 | . . . . . . 1 | . . . . . .
0 | X X . . . X 0 | X . . X X .
y /------------------- y /-------------------
x 0 1 2 3 4 5 x 0 1 2 3 4 5
{1,4,5,8,9,13,16,20,25,29} dist^2 {1,4,5,8,9,13,16,20,25,29}
.
A351701
Smallest maximum of the distinct squared distances between any two of the points taken over all possible solutions, written as triangle T(n,k) with problem size and number of points given by the corresponding A351700.
Original entry on oeis.org
0, 1, 2, 4, 5, 8, 9, 10, 10, 13, 16, 16, 16, 20, 20, 25, 25, 26, 25, 25, 41, 36, 36, 36, 40, 37, 37, 72, 49, 49, 49, 49, 58, 50, 50, 52, 64, 64, 64, 64, 64, 64, 73, 80, 74, 81, 81, 81, 81, 81, 90, 82, 82, 100, 113, 100, 100, 100, 100, 109, 100, 100, 109, 106, 104, 149
Offset: 1
Correspondence between the triangle of A351700 and T(n,k), with terms of this sequence shown delimited by parenthesis.
n\k 1 2 3 4 5 6 7 8 9 10 11
1: 1 | | | | | | | | | |
( 0) | | | | | | | | | |
2: 2 2 | | | | | | | | |
( 1 2) | | | | | | | | |
3: 2 3 3 | | | | | | | |
( 4 5 8) | | | | | | | |
4: 3 4 4 4 | | | | | | |
( 9 10 10 13) | | | | | | |
5: 3 4 4 5 5 | | | | | |
(16 16 16 20 20) | | | | | |
6: 3 4 5 5 5 6 | | | | |
(25 25 26 25 25 41) | | | | |
7: 4 5 5 6 6 6 7 | | | |
(36 36 36 40 37 37 72) | | | |
8: 4 5 5 6 7 7 7 7 | | |
(49 49 49 49 58 50 50 52) | | |
9: 4 5 6 6 7 7 8 8 8 | |
(64 64 64 64 64 64 73 80 74) | |
10: 4 6 6 7 7 8 8 8 9 9 |
(81 81 81 81 81 90 82 82 100 113) |
11: 4 6 6 7 8 8 8 9 9 9 10
(100 100 100 100 109 100 100 109 106 104 149)
.
T(6,6) = a(21) = 41:
There are only 2 essentially different point configurations of A351700(21) = 6 selected grid points:
[(0,0), (1,0), (2,5), (3,1), (5,3), (5,5)] with the corresponding list of squared distances {1, 4, 5, 8, 9, 10, 13, 17, 20, 25, 26, 29, 34, 41, 50},
and [(0,0),( 0, 3),( 0, 5),( 3, 2),( 4, 1),( 5, 1)] with squared distances
{1, 2, 4, 5, 9, 10, 13, 17, 18, 20, 25, 26, 29, 32, 41}.
The maximum of squared distances in the second configuration between the points (0,5) and (5,1) is 41, whereas the squared distance in the first configuration is 50, made by the corner points (0,0) and (5,5). Thus a(21) = min(41,50) = 41.
.
T(11,11) = a(66) = 149. The two possible configurations with 10 points on the quadratic grid with 11 X 11 points are given in the comments of A193838 or A271490. The first configuration uses the two corner points (0,0) and (10,10) with squared distance 200, whereas in the other configuration a squared distance of 149 between the points (0,0) and (7,10) is maximal. Thus a(66) = min(200,149) = 149.
A353447
a(n) is the number of tetrapods standing on the four edges of an n X n grid, so that no two feet are the same distance apart and no foot is on a corner. Tetrapods with congruent footprints are counted only once.
Original entry on oeis.org
0, 0, 1, 11, 40, 105, 190, 379, 616, 987, 1426, 2139, 2964, 4130, 5403, 7180, 9155, 11716, 14458, 18092, 22037, 26808, 31793, 38343, 45060, 53184, 61613, 71878, 82466, 95368, 108195, 123790, 140040, 158457, 177405, 200020, 223039, 248769, 275214, 306411, 337645
Offset: 3
.
. C . a(3) = 0 . . . C .
D . B <=== since AB = CD . . . . .
. A . is forbidden . . . . B
. . . . .
. C . . D . . . .
a(4) = 0 ===> ? . . . . A . . .
(there is no ? . . B ______________
space for D) . A . . a(5) = 1
(No other solutions)
.
. . . . . The tetrapod has 6 distinct
D . . . . squared distances 4, 5, 10,
. . . . C <===== 13, 17, 18, but it uses only
. . . . . three edges of the 5 X 5 grid.
. A . B . (Not allowed.)
.
The general case without excluding the corners of the grid rectangle is covered in
A354700 and
A354701.
Showing 1-3 of 3 results.
Comments