cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351930 Expansion of e.g.f. exp(x - x^4/24).

Original entry on oeis.org

1, 1, 1, 1, 0, -4, -14, -34, -34, 190, 1366, 5446, 11056, -30744, -421420, -2403764, -7434244, 9782396, 296347996, 2257819420, 9461601856, -1690329584, -395833164264, -3872875071064, -20629371958040, -17208144880024, 893208132927176, 10962683317693576
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
         `if`(n<4, 0, -a(n-4)*binomial(n-1, 3))+a(n-1))
        end:
    seq(a(n), n=0..27);  # Alois P. Heinz, Feb 26 2022
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x-x^4/4!)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, (-1/4!)^k*binomial(n-3*k, k)/(n-3*k)!);
    
  • PARI
    a(n) = if(n<4, 1, a(n-1)-binomial(n-1, 3)*a(n-4));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (-1/24)^k * binomial(n-3*k,k)/(n-3*k)!.
D-finite with recurrence a(n) = a(n-1) - binomial(n-1,3) * a(n-4) for n > 3.

A351906 Expansion of e.g.f. exp(x * (1 - x^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, -119, -719, -2519, -6719, -15119, 1784161, 19902961, 119655361, 518763961, 1815974161, -212497445159, -3472602456959, -29605333299359, -177764320560959, -844590032480159, 97992221659873921, 2116963290135836521, 23379513665735470321
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-x^4))))
    
  • PARI
    a(n) = n!*sum(k=0, n\5, (-1)^k*binomial(n-4*k, k)/(n-4*k)!);
    
  • PARI
    a(n) = if(n<5, 1, a(n-1)-5!*binomial(n-1, 4)*a(n-5));

Formula

a(n) = n! * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n-4*k,k)/(n-4*k)!.
a(n) = a(n-1) - 5! * binomial(n-1,4) * a(n-5) for n > 4.
Showing 1-2 of 2 results.