cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351932 Number of set partitions of [n] such that block sizes are either 1 or 4.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 106, 442, 1786, 6106, 23596, 120836, 631632, 2854216, 13590396, 81258556, 510768316, 2839808572, 16008902296, 108643656136, 787965516416, 5161270717296, 33513036683512, 253407796702776, 2065728484459576, 15485032349429176, 113510664648701776
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
         `if`(n<4, 0, a(n-4)*binomial(n-1, 3))+a(n-1))
        end:
    seq(a(n), n=0..28);  # Alois P. Heinz, Feb 26 2022
    seq(round(evalf(hypergeom([-n/4,(1-n)/4,(2-n)/4,(3-n)/4],[],32/3))),n=0..28);  # Karol A. Penson, Jul 28 2023
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x+x^4/4!)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, 1/4!^k*binomial(n-3*k, k)/(n-3*k)!);
    
  • PARI
    a(n) = if(n<4, 1, a(n-1)+binomial(n-1, 3)*a(n-4));

Formula

E.g.f.: exp(x + x^4/24).
a(n) = n! * Sum_{k=0..floor(n/4)} (1/24)^k * binomial(n-3*k,k)/(n-3*k)!.
a(n) = a(n-1) + binomial(n-1,3) * a(n-4) for n > 3.
a(n) = hypergeom([-n/4,(1-n)/4,(2-n)/4,(3-n)/4],[],32/3), Karol A. Penson, Jul 28 2023.