A352033 Sum of the 5th powers of the odd proper divisors of n.
0, 1, 1, 1, 1, 244, 1, 1, 244, 3126, 1, 244, 1, 16808, 3369, 1, 1, 59293, 1, 3126, 17051, 161052, 1, 244, 3126, 371294, 59293, 16808, 1, 762744, 1, 1, 161295, 1419858, 19933, 59293, 1, 2476100, 371537, 3126, 1, 4101152, 1, 161052, 821793, 6436344, 1, 244, 16808, 9768751
Offset: 1
Examples
a(10) = 3126; a(10) = Sum_{d|10, d<10, d odd} d^5 = 1^5 + 5^5 = 3126.
Links
Crossrefs
Programs
-
Mathematica
Table[Total[Select[Most[Divisors[n]],OddQ]^5],{n,50}] (* Harvey P. Dale, May 01 2023 *) f[2, e_] := 1; f[p_, e_] := (p^(5*e+5) - 1)/(p^5 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^5, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)
Formula
a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^5 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
Sum_{k=1..n} a(k) ~ c * n^6, where c = (zeta(6)-1)/12 = 0.0014452551... . (End)