cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352034 Sum of the 6th powers of the odd proper divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 730, 1, 1, 730, 15626, 1, 730, 1, 117650, 16355, 1, 1, 532171, 1, 15626, 118379, 1771562, 1, 730, 15626, 4826810, 532171, 117650, 1, 11406980, 1, 1, 1772291, 24137570, 133275, 532171, 1, 47045882, 4827539, 15626, 1, 85884500, 1, 1771562, 11938421, 148035890
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 15626; a(10) = Sum_{d|10, d<10, d odd} d^6 = 1^6 + 5^6 = 15626.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), this sequence (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(6*e+6) - 1)/(p^6 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^6, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)
    Table[Total[Select[Most[Divisors[n]],OddQ]^6],{n,50}] (* Harvey P. Dale, Sep 15 2024 *)

Formula

a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^6 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
For odd n >1, a(n) = A321810(n)-n^6; for even n, a(n) = A321810(n). - R. J. Mathar, Aug 15 2023
Sum_{k=1..n} a(k) ~ c * n^7, where c = (zeta(7)-1)/14 = 0.0005963769... . - Amiram Eldar, Oct 11 2023