A352036 Sum of the 8th powers of the odd proper divisors of n.
0, 1, 1, 1, 1, 6562, 1, 1, 6562, 390626, 1, 6562, 1, 5764802, 397187, 1, 1, 43053283, 1, 390626, 5771363, 214358882, 1, 6562, 390626, 815730722, 43053283, 5764802, 1, 2563287812, 1, 1, 214365443, 6975757442, 6155427, 43053283, 1, 16983563042, 815737283, 390626, 1
Offset: 1
Examples
a(10) = 390626; a(10) = Sum_{d|10, d<10, d odd} d^8 = 1^8 + 5^8 = 390626.
Links
Crossrefs
Programs
-
Mathematica
Table[Total[Select[Most[Divisors[n]],OddQ]^8],{n,45}] (* Harvey P. Dale, Aug 07 2022 *) f[2, e_] := 1; f[p_, e_] := (p^(8*e+8) - 1)/(p^8 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^8, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)
Formula
a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^8 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
Sum_{k=1..n} a(k) ~ c * n^9, where c = (zeta(9)-1)/18 = 0.0001115773... . (End)