cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352036 Sum of the 8th powers of the odd proper divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 6562, 1, 1, 6562, 390626, 1, 6562, 1, 5764802, 397187, 1, 1, 43053283, 1, 390626, 5771363, 214358882, 1, 6562, 390626, 815730722, 43053283, 5764802, 1, 2563287812, 1, 1, 214365443, 6975757442, 6155427, 43053283, 1, 16983563042, 815737283, 390626, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 390626; a(10) = Sum_{d|10, d<10, d odd} d^8 = 1^8 + 5^8 = 390626.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), this sequence (k=8), A352037 (k=9), A352038 (k=10).

Programs

  • Mathematica
    Table[Total[Select[Most[Divisors[n]],OddQ]^8],{n,45}] (* Harvey P. Dale, Aug 07 2022 *)
    f[2, e_] := 1; f[p_, e_] := (p^(8*e+8) - 1)/(p^8 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^8, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)

Formula

a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^8 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
a(n) = A321812(n) - n^8*A000035(n).
Sum_{k=1..n} a(k) ~ c * n^9, where c = (zeta(9)-1)/18 = 0.0001115773... . (End)