A352052 Sum of the 6th powers of the divisor complements of the odd proper divisors of n.
0, 64, 729, 4096, 15625, 46720, 117649, 262144, 532170, 1000064, 1771561, 2990080, 4826809, 7529600, 11406979, 16777216, 24137569, 34058944, 47045881, 64004096, 85884499, 113379968, 148035889, 191365120, 244156250, 308915840, 387952659, 481894400, 594823321
Offset: 1
Examples
a(10) = 10^6 * Sum_{d|10, d<10, d odd} 1 / d^6 = 10^6 * (1/1^6 + 1/5^6) = 1000064.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local m,d; m:= n/2^padic:-ordp(n,2); add((n/d)^6, d = select(`<`,numtheory:-divisors(m),n)) end proc: map(f, [$1..30]); # Robert Israel, Apr 03 2023
-
Mathematica
Table[n^6*DivisorSum[n, 1/#^6 &, And[# < n, OddQ[#]] &], {n, 29}] (* Michael De Vlieger, Apr 04 2023 *) a[n_] := DivisorSigma[-6, n/2^IntegerExponent[n, 2]] * n^6 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
-
PARI
a(n) = n^6*sumdiv(n, d, if ((d
Michel Marcus, Apr 04 2023 -
PARI
a(n) = n^6 * sigma(n >> valuation(n, 2), -6) - n % 2; \\ Amiram Eldar, Oct 13 2023
Formula
a(n) = n^6 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^6 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 18 2023
From Amiram Eldar, Oct 13 2023: (Start)
Sum_{k=1..n} a(k) = c * n^7 / 7, where c = 127*zeta(7)/128 = 1.000471548... . (End)