cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A352242 Regular triangle T(n,k) = (n-k)*(n^3-k^3) for n>=2 and 1 <= k <= n-1, read by rows.

Original entry on oeis.org

7, 52, 19, 189, 112, 37, 496, 351, 196, 61, 1075, 832, 567, 304, 91, 2052, 1675, 1264, 837, 436, 127, 3577, 3024, 2425, 1792, 1161, 592, 169, 5824, 5047, 4212, 3325, 2416, 1539, 772, 217, 8991, 7936, 6811, 5616, 4375, 3136, 1971, 976, 271, 13300, 11907, 10432, 8869, 7236, 5575, 3952, 2457, 1204, 331
Offset: 2

Views

Author

Michel Marcus, Mar 09 2022

Keywords

Examples

			Triangle begins:
     7;
    52,   19;
   189,  112,   37;
   496,  351,  196,  61;
  1075,  832,  567, 304,  91;
  2052, 1675, 1264, 837, 436, 127;
  ...
		

Crossrefs

Cf. A003215 (right diagonal), A138849 (left border).

Programs

  • Mathematica
    Table[(n - k) (n^3 - k^3), {n, 2, 11}, {k, n - 1}] // Flatten (* Michael De Vlieger, Mar 09 2022 *)
  • PARI
    row(n) = vector(n-1, k, (n-k)*(n^3-k^3));

Formula

T(n,k) = A055461(n,k)*A132111(n,k). - R. J. Mathar, Feb 10 2025

A352243 Positive integers of the form (x-y)*(x^3-y^3).

Original entry on oeis.org

7, 19, 37, 52, 61, 91, 112, 127, 169, 189, 196, 217, 271, 304, 331, 351, 397, 436, 469, 496, 547, 567, 592, 631, 721, 772, 817, 832, 837, 919, 976, 1027, 1075, 1141, 1161, 1204, 1261, 1264, 1387, 1456, 1519, 1539, 1657, 1675, 1732, 1792, 1801, 1951, 1971, 2032, 2052
Offset: 1

Views

Author

Michel Marcus, Mar 09 2022

Keywords

Comments

Integers that are in the A352242 triangle.

Examples

			7, 19, 37, 52 and 61 are respectively A352242(1,1), A352242(2,2), A352242(3,3), A352242(2,1) and A352242(4,4).
		

Crossrefs

Programs

  • Maple
    N:= 10^4: # for terms <= N
    S:= {}:
    for y from 1 while 3*y^2 + 3*y + 1 <= N do
      for x from y+1 do
        v:= (x-y)*(x^3-y^3);
        if v > N then break fi;
        S:= S union {v};
    od; od:
    sort(convert(S,list)); # Robert Israel, May 16 2024
  • PARI
    row(n) = vector(n-1, k, (n-k)*(n^3-k^3));
    lista(nn) = {my(list = List(), n=2); while (3*n*(n-1)+1 <= nn, my(rown = row(n)); for (k=1, #rown, if (rown[k] <= nn, listput(list, rown[k]))); n++;); Set(Vec(list));}

A373001 Positive integers that can be expressed in at least three ways as (x-y)*(x^3-y^3).

Original entry on oeis.org

1641000816, 1773440487, 2476486656, 20129719792, 26256013056, 28375047792, 39623786496, 106509692016, 132921066096, 143648679447, 200595419136, 218247135232, 322075516672, 420096208896, 454000764672, 600908378112, 631190070000, 633980583936, 877482798192, 1025625510000, 1108400304375
Offset: 1

Views

Author

David A. Corneth, May 19 2024

Keywords

Examples

			1773440487 is here via 1773440487 = (2706 - 2697) * (2706^3 - 2697^3) = (417 - 354) * (417^3 - 354^3) = (211 - 22) * (211^3 - 22^3).
		

Crossrefs

Cf. A352244.

Programs

  • PARI
    is(n) = {
    	if(valuation(n, 3) == 1, return(0));
    	my(f = factor(n), cf = f, q, c, dc);
    	cf[,2]>>=1;
    	c = factorback(cf);
    	dc = divisors(c);
    	for(i = 1, #dc,
    		dc2 = dc[i]^2;
    		dk = n/dc2;
    		if(dk > dc2 && (dk - dc2)%3 == 0,
    			D = dc2 + 4*(dk - dc2)/3;
    			if(issquare(D, &sD) && denominator((-dc[i] + sD)/2) == 1,
    				q++
    			)
    		)	
    	);
    	q >= 3
    }
Showing 1-3 of 3 results.