A353094
a(1) = 2; for n > 1, a(n) = 3*a(n-1) + 3 - n.
Original entry on oeis.org
2, 7, 21, 62, 184, 549, 1643, 4924, 14766, 44291, 132865, 398586, 1195748, 3587233, 10761687, 32285048, 96855130, 290565375, 871696109, 2615088310, 7845264912, 23535794717, 70607384131, 211822152372, 635466457094, 1906399371259, 5719198113753, 17157594341234
Offset: 1
-
LinearRecurrence[{5, -7, 3}, {2, 7, 21}, 28] (* Amiram Eldar, Apr 23 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(2-3*x)/((1-x)^2*(1-3*x)))
-
a(n) = (3^(n+1)+2*n-3)/4;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 3);
A353096
a(1) = 4; for n > 1, a(n) = 5*a(n-1) + 5 - n.
Original entry on oeis.org
4, 23, 117, 586, 2930, 14649, 73243, 366212, 1831056, 9155275, 45776369, 228881838, 1144409182, 5722045901, 28610229495, 143051147464, 715255737308, 3576278686527, 17881393432621, 89406967163090, 447034835815434, 2235174179077153, 11175870895385747
Offset: 1
-
LinearRecurrence[{7, -11, 5}, {4, 23, 117}, 23] (* Amiram Eldar, Apr 23 2022 *)
nxt[{n_, a_}] := {n + 1, 5 a + 4 - n}; NestList[nxt,{1,4},30][[;;,2]] (* Harvey P. Dale, Apr 28 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(4-5*x)/((1-x)^2*(1-5*x)))
-
a(n) = (3*5^(n+1)+4*n-15)/16;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 5);
A353097
a(1) = 5; for n > 1, a(n) = 6*a(n-1) + 6 - n.
Original entry on oeis.org
5, 34, 207, 1244, 7465, 44790, 268739, 1612432, 9674589, 58047530, 348285175, 2089711044, 12538266257, 75229597534, 451377585195, 2708265511160, 16249593066949, 97497558401682, 584985350410079, 3509912102460460, 21059472614762745, 126356835688576454
Offset: 1
-
LinearRecurrence[{8, -13, 6}, {5, 34, 207}, 22] (* Amiram Eldar, Apr 23 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(5-6*x)/((1-x)^2*(1-6*x)))
-
a(n) = (4*6^(n+1)+5*n-24)/25;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 6);
A353098
a(1) = 6; for n>1, a(n) = 7 * a(n-1) + 7 - n.
Original entry on oeis.org
6, 47, 333, 2334, 16340, 114381, 800667, 5604668, 39232674, 274628715, 1922401001, 13456807002, 94197649008, 659383543049, 4615684801335, 32309793609336, 226168555265342, 1583179886857383, 11082259208001669, 77575814456011670, 543030701192081676
Offset: 1
-
LinearRecurrence[{9, -15, 7}, {6, 47, 333}, 21] (* Amiram Eldar, Apr 23 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(6-7*x)/((1-x)^2*(1-7*x)))
-
a(n) = (5*7^(n+1)+6*n-35)/36;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 7);
A353099
a(1) = 7; for n>1, a(n) = 8 * a(n-1) + 8 - n.
Original entry on oeis.org
7, 62, 501, 4012, 32099, 256794, 2054353, 16434824, 131478591, 1051828726, 8414629805, 67317038436, 538536307483, 4308290459858, 34466323678857, 275730589430848, 2205844715446775, 17646757723574190, 141174061788593509, 1129392494308748060
Offset: 1
-
LinearRecurrence[{10, -17, 8}, {7, 62, 501}, 20] (* Amiram Eldar, Apr 23 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(7-8*x)/((1-x)^2*(1-8*x)))
-
a(n) = (6*8^(n+1)+7*n-48)/49;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 8);
A353100
a(1) = 8; for n>1, a(n) = 9 * a(n-1) + 9 - n.
Original entry on oeis.org
8, 79, 717, 6458, 58126, 523137, 4708235, 42374116, 381367044, 3432303395, 30890730553, 278016574974, 2502149174762, 22519342572853, 202674083155671, 1824066748401032, 16416600735609280, 147749406620483511, 1329744659584351589, 11967701936259164290
Offset: 1
-
LinearRecurrence[{11, -19, 9}, {8, 79, 717}, 20] (* Amiram Eldar, Apr 23 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(x*(8-9*x)/((1-x)^2*(1-9*x)))
-
a(n) = (7*9^(n+1)+8*n-63)/64;
-
b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
a(n) = b(n, 9);
A363365
Array read by ascending antidiagonals: A(1, k) = k; for n > 1, A(n, k) = (k + 1)*A(n-1, k) + k + 1 - n, with k > 0.
Original entry on oeis.org
1, 2, 2, 3, 7, 3, 4, 21, 14, 4, 5, 62, 57, 23, 5, 6, 184, 228, 117, 34, 6, 7, 549, 911, 586, 207, 47, 7, 8, 1643, 3642, 2930, 1244, 333, 62, 8, 9, 4924, 14565, 14649, 7465, 2334, 501, 79, 9, 10, 14766, 58256, 73243, 44790, 16340, 4012, 717, 98, 10
Offset: 1
The array begins:
1, 2, 3, 4, 5, ...
2, 7, 14, 23, 34, ...
3, 21, 57, 117, 207, ...
4, 62, 228, 586, 1244, ...
5, 184, 911, 2930, 7465, ...
6, 549, 3642, 14649, 44790, ...
...
Cf.
A000027 (n=1 or k=1),
A008865,
A051846 (diagonal),
A064017 (k=9),
A353094 (k=2),
A353095 (k=3),
A353096 (k=4),
A353097 (k=5),
A353098 (k=6),
A353099 (k=7),
A353100 (k=8),
A363366 (antidiagonal sums).
-
A[n_,k_]:=((k-1)*(k+1)^(n+1)+k*n-k^2+1)/k^2; Table[A[n-k+1,k],{n,10},{k,n}]//Flatten (* or *)
A[n_,k_]:=SeriesCoefficient[x*(k-(k+1)*x)/((1-x)^2*(1-(k+1)*x)),{x,0,n}]; Table[A[n-k+1,k],{n,10},{k,n}]//Flatten (* or *)
A[n_,k_]:=n!SeriesCoefficient[Exp[x]((k^2-1)(Exp[k x]-1)+k x)/k^2,{x,0,n}]; Table[A[n-k+1,k],{n,10},{k,n}]//Flatten
Showing 1-7 of 7 results.