cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353533 T(n,m) with 4 <= m < n is the number of quadrilaterals in A353532 with perpendicular diagonals, where T(n,m) is a triangle read by rows.

Original entry on oeis.org

1, 2, 1, 2, 2, 3, 3, 3, 4, 6, 3, 5, 5, 8, 9, 4, 4, 6, 12, 12, 12, 4, 4, 12, 8, 11, 15, 14, 5, 5, 8, 10, 15, 15, 20, 18, 5, 5, 8, 27, 15, 33, 32, 26, 25, 6, 6, 10, 11, 17, 17, 23, 22, 29, 29, 6, 6, 10, 12, 48, 18, 24, 29, 30, 42, 34, 7, 7, 16, 14, 21, 21, 41, 69, 34
Offset: 5

Views

Author

Hugo Pfoertner and Rainer Rosenthal, May 04 2022

Keywords

Examples

			The quadrilaterals counted in A353532 with m = 3 or m = n cannot have perpendicular diagonals, and are therefore omitted in the triangle of this sequence.
.
    \ m 3   4   5   6   7   8   9  10  11
   n \-----------------------------------
   3 |  0,  |   |   |   |   |   |   |   |
   4 |  0,  0,  |   |   |   |   |   |   |
   5 |  0,  1,  0,  |   |   |   |   |   |
   6 |  0,  2,  1,  0,  |   |   |   |   |
   7 |  0,  2,  2,  3,  0,  |   |   |   |
   8 |  0,  3,  3,  4,  6,  0,  |   |   |
   9 |  0,  3,  5,  5,  8,  9,  0,  |   |
  10 |  0,  4,  4,  6, 12, 12, 12,  0,  |
  11 |  0,  4,  4, 12,  8, 11, 15, 14,  0
.
T(5,4) = a(1) = 1:
.
   4 | . C . . .      Squared distances denoted
   3 | . . . . .      as in examples A353532:
   2 | D . . . B
   1 | . A . . .       AB-BC-CD-DA (around)
   y /----------       AC X DB     (across)
     x 1 2 3 4 5
.
      10-13-5-2
      9 X 16
.
T(6,4) = a(2) = 2:
.
   4 | . X . . . .     4 | . . X . . .
   3 | . . . . . .     3 | . . . . . .
   2 | X . . . . X     2 | X . . . . X
   1 | . X . . . .     1 | . . X . . .
   y /------------     y /------------
     x 1 2 3 4 5 6       x 1 2 3 4 5 6
.
      17-20-5-2           10-13-8-5
      9 X 25              9 X 25
.
T(6,5) = a(3) = 1:
.
   5 | . . X . . .
   4 | . . . . . .
   3 | . . . . . .     10-18-13-5
   2 | X . . . . X     16 X 25
   1 | . . X . . .
   y /------------
     x 1 2 3 4 5 6
.
T(9,5) = a(12) = 5;
3 quadrilaterals with diagonals parallel to the grid axes:
.
   5 | . X . . . . . . .   5 | . . X . . . . . .   5 | . . . X . . . . .
   4 | . . . . . . . . .   4 | . . . . . . . . .   4 | . . . . . . . . .
   3 | . . . . . . . . .   3 | . . . . . . . . .   3 | . . . . . . . . .
   2 | X . . . . . . . X   2 | X . . . . . . . X   2 | X . . . . . . . X
   1 | . X . . . . . . .   1 | . . X . . . . . .   1 | . . . X . . . . .
   y /------------------   y /------------------   y /------------------
     x 1 2 3 4 5 6 7 8 9     x 1 2 3 4 5 6 7 8 9     x 1 2 3 4 5 6 7 8 9
.
         50-58-10-2              37-45-13-5              26-34-18-10
         16 X 64                 16 X 64                 16 X 64
.
The 2 quadrilaterals with diagonals not aligned with the grid axes are the smallest example of this type:
.
.
   5 | . X . . . . . . .   5 | . . X . . . . . .
   4 | . . . . . . . . X   4 | . . . . . . . . X
   3 | . . . . . . . . .   3 | . . . . . . . . .
   2 | X . . . . . . . .   2 | X . . . . . . . .
   1 | . . X . . . . . .   1 | . . . X . . . . .
   y /------------------   y /------------------
     x 1 2 3 4 5 6 7 8 9     x 1 2 3 4 5 6 7 8 9
.
         45-50-10-5              34-37-13-10
         17 X 68                 17 X 68
.
		

Crossrefs