cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353580 a(n) = 2*a(n-1) + a(n-2) - 1, with a(0) = 0 and a(1) = 2.

Original entry on oeis.org

0, 2, 3, 7, 16, 38, 91, 219, 528, 1274, 3075, 7423, 17920, 43262, 104443, 252147, 608736, 1469618, 3547971, 8565559, 20679088, 49923734, 120526555, 290976843, 702480240, 1695937322, 4094354883, 9884647087, 23863649056, 57611945198, 139087539451, 335787024099, 810661587648
Offset: 0

Views

Author

Paul K. Stockmeyer, May 03 2022

Keywords

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,2b+a-1}; NestList[nxt,{0,2},40][[;;,1]] (* or *) LinearRecurrence[{3,-1,-1},{0,2,3},40] (* Harvey P. Dale, Mar 14 2025 *)

Formula

a(n) = (1/4)((2*s - 1)*(1 + s)^n - (2*s + 1)*(1 - s)^n + 2) where s = sqrt(2).
G.f.: -x*(3*x-2)/((x-1)*(x^2+2*x-1)). - Alois P. Heinz, May 03 2022
E.g.f.: exp(x)*(1 - cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x))/2. - Stefano Spezia, May 03 2022