cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A353832 Heinz number of the multiset of run-sums of the prime indices of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 9, 13, 14, 15, 7, 17, 14, 19, 15, 21, 22, 23, 15, 13, 26, 13, 21, 29, 30, 31, 11, 33, 34, 35, 21, 37, 38, 39, 25, 41, 42, 43, 33, 35, 46, 47, 21, 19, 26, 51, 39, 53, 26, 55, 35, 57, 58, 59, 45, 61, 62, 49, 13, 65, 66, 67, 51, 69, 70, 71, 35, 73, 74, 39, 57, 77, 78, 79, 35, 19
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
This sequence represents the transformation f(P) described by Kimberling at A237685.

Examples

			The prime indices of 1260 are {1,1,2,2,3,4}, with run-sums (2,4,3,4), and the multiset {2,3,4,4} has Heinz number 735, so a(1260) = 735.
		

Crossrefs

The number of distinct prime factors of a(n) is A353835, weak A353861.
The version for compositions is A353847, listed A353932.
The greatest prime factor of a(n) has index A353862, least A353931.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.
A353851 counts compositions w/ all equal run-sums, ranked by A353848.
A353864 counts rucksack partitions, ranked by A353866.
A353865 counts perfect rucksack partitions, ranked by A353867.
Cf. A005811, A047966, A071625, A073093, A181819, A182850, A182857, A304660, A323014, A353834, A353839, A353841 (1 + iterations needed to reach a squarefree number).

Programs

  • Mathematica
    Table[Times@@Prime/@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353832(n) = if(1==n,n,my(pruns = pis_to_runs(n), m=1, runsum=pruns[1]); for(i=2,#pruns,if(pruns[i] == pruns[i-1], runsum += pruns[i], m *= prime(runsum); runsum = pruns[i])); (m*prime(runsum))); \\ Antti Karttunen, Jan 20 2025

Formula

A001222(a(n)) = A001221(n).
A001221(a(n)) = A353835(n).
A061395(a(n)) = A353862(n).

Extensions

More terms from Antti Karttunen, Jan 20 2025

A353847 Composition run-sum transformation in terms of standard composition numbers. The a(k)-th composition in standard order is the sequence of run-sums of the k-th composition in standard order. Takes each index of a row of A066099 to the index of the row consisting of its run-sums.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 6, 4, 8, 9, 8, 10, 12, 13, 10, 8, 16, 17, 18, 18, 20, 17, 22, 20, 24, 25, 24, 26, 20, 21, 18, 16, 32, 33, 34, 34, 32, 37, 38, 36, 40, 41, 32, 34, 44, 45, 42, 40, 48, 49, 50, 50, 52, 49, 54, 52, 40, 41, 40, 42, 36, 37, 34, 32, 64, 65, 66, 66
Offset: 0

Views

Author

Gus Wiseman, May 30 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			As a triangle:
   0
   1
   2  2
   4  5  6  4
   8  9  8 10 12 13 10  8
  16 17 18 18 20 17 22 20 24 25 24 26 20 21 18 16
These are the standard composition numbers of the following compositions (transposed):
  ()  (1)  (2)  (3)    (4)      (5)
           (2)  (2,1)  (3,1)    (4,1)
                (1,2)  (4)      (3,2)
                (3)    (2,2)    (3,2)
                       (1,3)    (2,3)
                       (1,2,1)  (4,1)
                       (2,2)    (2,1,2)
                       (4)      (2,3)
                                (1,4)
                                (1,3,1)
                                (1,4)
                                (1,2,2)
                                (2,3)
                                (2,2,1)
                                (3,2)
                                (5)
		

Crossrefs

Standard compositions are listed by A066099.
The version for partitions is A353832.
The run-sums themselves are listed by A353932, with A353849 distinct terms.
A005811 counts runs in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.
A353863 counts run-sum-complete partitions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Total/@Split[stc[n]]],{n,0,100}]

A353833 Numbers whose multiset of prime indices has all equal run-sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 40, 41, 43, 47, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169, 173, 179
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The prime indices of 12 are {1,1,2}, with run-sums (2,2), so 12 is in the sequence.
		

Crossrefs

For parts instead of run-sums we have A000961, counted by A000005.
For run-lengths instead of run-sums we have A072774, counted by A047966.
These partitions are counted by A304442.
These are the positions of powers of primes in A353832.
The restriction to nonprimes is A353834.
For distinct instead of equal run-sums we have A353838, counted by A353837.
The version for compositions is A353848, counted by A353851.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion, distinct run-lengths A165413.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353840-A353846 deal with iterated run-sums for partitions.
A353862 gives greatest run-sum of prime indices, least A353931.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Select[Range[100],SameQ@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&]

A353932 Irregular triangle read by rows where row k lists the run-sums of the k-th composition in standard order.

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 1, 2, 3, 4, 3, 1, 4, 2, 2, 1, 3, 1, 2, 1, 2, 2, 4, 5, 4, 1, 3, 2, 3, 2, 2, 3, 4, 1, 2, 1, 2, 2, 3, 1, 4, 1, 3, 1, 1, 4, 1, 2, 2, 2, 3, 2, 2, 1, 3, 2, 5, 6, 5, 1, 4, 2, 4, 2, 6, 3, 2, 1, 3, 1, 2, 3, 3, 2, 4, 2, 3, 1, 6, 4, 2, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Triangle begins:
  1
  2
  2
  3
  2 1
  1 2
  3
  4
  3 1
  4
  2 2
  1 3
  1 2 1
For example, composition 350 in standard order is (2,2,1,1,1,2), so row 350 is (4,3,2).
		

Crossrefs

Row-sums are A029837.
Standard compositions are listed by A066099.
Row-lengths are A124767.
These compositions are ranked by A353847.
Row k has A353849(k) distinct parts.
The version for partitions is A354584, ranked by A353832.
A005811 counts runs in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total/@Split[stc[n]],{n,0,30}]

A353849 Number of distinct positive run-sums of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 3, 3, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 1, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, May 30 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 462903 in standard order is (1,1,4,7,1,2,1,1,1), with run-sums (2,4,7,1,2,3), of which a(462903) = 5 are distinct.
		

Crossrefs

Counting repeated runs also gives A124767.
Positions of first appearances are A246534.
For distinct runs instead of run-sums we have A351014 (firsts A351015).
A version for partitions is A353835, weak A353861.
Positions of 1's are A353848, counted by A353851.
The version for binary expansion is A353929 (firsts A353930).
The run-sums themselves are listed by A353932, with A353849 distinct terms.
For distinct run-lengths instead of run-sums we have A354579.
A005811 counts runs in binary expansion.
A066099 lists compositions in standard order.
A165413 counts distinct run-lengths in binary expansion.
A297770 counts distinct runs in binary expansion, firsts A350952.
A353847 represents the run-sum transformation for compositions.
A353853-A353859 pertain to composition run-sum trajectory.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Total/@Split[stc[n]]]],{n,0,100}]

A353840 Trajectory of the partition run-sum transformation of n, using Heinz numbers.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 6, 7, 8, 5, 9, 7, 10, 11, 12, 9, 7, 13, 14, 15, 16, 7, 17, 18, 14, 19, 20, 15, 21, 22, 23, 24, 15, 25, 13, 26, 27, 13, 28, 21, 29, 30, 31, 32, 11, 33, 34, 35, 36, 21, 37, 38, 39, 40, 25, 13, 41, 42, 43, 44, 33, 45, 35, 46, 47, 48, 21, 49, 19
Offset: 1

Views

Author

Gus Wiseman, May 25 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 given in row 12 corresponds to the partitions (2,1,1) -> (2,2) -> (4).
This is the iteration of the transformation f described by Kimberling at A237685.

Examples

			Triangle begins:
   1
   2
   3
   4  3
   5
   6
   7
   8  5
   9  7
  10
  11
  12  9  7
Row 87780 is the following trajectory (left column), with prime indices shown on the right:
  87780: {1,1,2,3,4,5,8}
  65835: {2,2,3,4,5,8}
  51205: {3,4,4,5,8}
  19855: {3,5,8,8}
   2915: {3,5,16}
		

Crossrefs

The version for run-lengths instead of sums is A325239 or A325277.
This is the iteration of A353832, with composition version A353847.
Row-lengths are A353841, counted by A353846.
Final terms are A353842.
Counting rows by final omega gives A353843.
Rows ending in a prime number are A353844, counted by A353845.
These sequences for compositions are A353853-A353859.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A182850 or A323014 gives frequency depth.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353862 gives greatest run-sum of prime indices, least A353931.

Programs

  • Mathematica
    Table[NestWhileList[Times@@Prime/@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&,n,Not@*SquareFreeQ],{n,30}]

A354584 Irregular triangle read by rows where row k lists the run-sums of the multiset (weakly increasing sequence) of prime indices of n.

Original entry on oeis.org

1, 2, 2, 3, 1, 2, 4, 3, 4, 1, 3, 5, 2, 2, 6, 1, 4, 2, 3, 4, 7, 1, 4, 8, 2, 3, 2, 4, 1, 5, 9, 3, 2, 6, 1, 6, 6, 2, 4, 10, 1, 2, 3, 11, 5, 2, 5, 1, 7, 3, 4, 2, 4, 12, 1, 8, 2, 6, 3, 3, 13, 1, 2, 4, 14, 2, 5, 4, 3, 1, 9, 15, 4, 2, 8, 1, 6, 2, 7, 2, 6, 16
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			Triangle begins:
  .
  1
  2
  2
  3
  1 2
  4
  3
  4
  1 3
  5
  2 2
  6
  1 4
  2 3
For example, the prime indices of 630 are {1,2,2,3,4}, so row 630 is (1,4,3,4).
		

Crossrefs

Positions of first appearances are A308495 plus 1.
The version for compositions is A353932, ranked by A353847.
Classes:
- singleton rows: A000961
- constant rows: A353833, nonprime A353834, counted by A304442
- strict rows: A353838, counted by A353837, complement A353839
Statistics:
- row lengths: A001221
- row sums: A056239
- row products: A304117
- row ranks (as partitions): A353832
- row image sizes: A353835
- row maxima: A353862
- row minima: A353931
A001222 counts prime factors with multiplicity.
A112798 and A296150 list partitions by rank.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353840-A353846 pertain to partition run-sum trajectory.
A353861 counts distinct sums of partial runs of prime indices.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k],{n,30}]

A353866 Heinz numbers of rucksack partitions. Every prime-power divisor has a different sum of prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
In a knapsack partition (A108917, ranked by A299702), every submultiset has a different sum, so these are run-knapsack partitions or rucksack partitions for short.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    6: {1,2}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
The sequence contains 18 because its prime-power divisors {1,2,3,9} have prime indices {}, {1}, {2}, {2,2} with distinct sums {0,1,2,4}. On the other hand, 12 is not in the sequence because {2} and {1,1} have the same sum.
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
The strong case is A353838, counted by A353837, complement A353839.
These partitions are counted by A353864.
The complete case is A353867, counted by A353865.
The complement is A354583.
A000041 counts partitions, strict A000009.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Total/@Select[msubs[primeMS[#]],SameQ@@#&]&]

A353861 Number of distinct weak run-sums of the prime indices of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 3, 5, 2, 4, 2, 4, 3, 3, 2, 4, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 4, 2, 3, 3, 4, 2, 4, 2, 4, 4, 3, 2, 5, 3, 4, 3, 4, 2, 5, 3, 5, 3, 3, 2, 4, 2, 3, 3, 7, 3, 4, 2, 4, 3, 4, 2, 5, 2, 3, 4, 4, 3, 4, 2, 5, 5, 3, 2, 4, 3, 3, 3, 5, 2, 5, 3, 4, 3, 3, 3, 6, 2, 4, 4, 5, 2, 4, 2, 5, 4, 3, 2, 5
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A weak run-sum of a sequence is the sum of any consecutive constant subsequence.

Examples

			The prime indices of 72 are {1,1,1,2,2}, with weak runs {}, {1}, {1,1}, {1,1,1}, {2}, {2,2}, which have sums 0, 1, 2, 3, 2, 4, of which 5 are distinct, so a(72) = 5.
		

Crossrefs

Positions of 2's are A000040.
Positions of first appearances are A000079.
The strong version is A353835, firsts A002110.
Partitions with distinct run-sums are ranked by A353838, counted by A353837.
The strong version for compositions is A353849.
The greatest run-sum is given by A353862, least A353931.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A165413 counts distinct run-lengths in binary expansion, sums A353929.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents taking run-sums of a partition, compositions A353847.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.

Programs

  • Mathematica
    Table[Length[Union@@Cases[FactorInteger[n],{p_,k_}:>Range[0,k]*PrimePi[p]]],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353861(n) = if(1==n,n,my(pruns = pis_to_runs(n), runsum = 0, runsums = List([])); for(i=1,#pruns, listput(runsums, runsum); if((i>1) && pruns[i] == pruns[i-1], runsum += pruns[i], runsum = pruns[i])); listput(runsums, runsum); #Set(runsums)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A353834 Nonprime numbers whose prime indices have all equal run-sums.

Original entry on oeis.org

1, 4, 8, 9, 12, 16, 25, 27, 32, 40, 49, 63, 64, 81, 112, 121, 125, 128, 144, 169, 243, 256, 289, 325, 343, 351, 352, 361, 512, 529, 625, 675, 729, 832, 841, 931, 961, 1008, 1024, 1331, 1369, 1539, 1600, 1681, 1728, 1849, 2048, 2176, 2187, 2197, 2209, 2401
Offset: 1

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    12: {1,1,2}
    16: {1,1,1,1}
    25: {3,3}
    27: {2,2,2}
    32: {1,1,1,1,1}
    40: {1,1,1,3}
    49: {4,4}
    63: {2,2,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   112: {1,1,1,1,4}
   121: {5,5}
   125: {3,3,3}
   128: {1,1,1,1,1,1,1}
For example, 675 is in the sequence because its prime indices {2,2,2,3,3} have run-sums (6,6).
		

Crossrefs

For equal run-lengths we have A072774\A000040, counted by A047966(n)-1.
These partitions are counted by A304442(n) - 1.
These are the nonprime positions of prime powers in A353832.
Including the primes gives A353833.
For distinct run-sums we have A353838\A000040, counted by A353837(n)-1.
For compositions we have A353848\A000079, counted by A353851(n)-1.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion, distinct run-lengths A165413.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353840-A353846 pertain to partition run-sum trajectory.
A353862 gives greatest run-sum of prime indices, least A353931.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[#]&&SameQ@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&]
  • Python
    from itertools import count, islice
    from sympy import factorint, primepi
    def A353848_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: n == 1 or (sum((f:=factorint(n)).values()) > 1 and len(set(primepi(p)*e for p, e in f.items())) <= 1), count(max(startvalue,1)))
    A353848_list = list(islice(A353848_gen(),30)) # Chai Wah Wu, May 27 2022
Showing 1-10 of 26 results. Next