A354068 Minimum number of diagonal transversals in an orthogonal diagonal Latin square of order n.
1, 0, 0, 4, 5, 0, 8, 8, 14
Offset: 1
Examples
One of the best orthogonal diagonal Latin squares of order n=9 0 1 2 3 4 5 6 7 8 1 2 3 8 6 4 7 0 5 5 4 6 0 7 8 3 1 2 7 3 1 5 2 6 0 8 4 8 7 4 6 1 2 5 3 0 3 0 5 4 8 7 1 2 6 4 6 7 2 3 0 8 5 1 6 5 8 1 0 3 2 4 7 2 8 0 7 5 1 4 6 3 has orthogonal diagonal mate 0 1 2 3 4 5 6 7 8 2 3 8 7 5 6 4 1 0 1 5 4 8 6 0 2 3 7 8 7 0 6 1 3 5 4 2 5 0 1 2 7 8 3 6 4 4 6 7 0 3 2 8 5 1 3 8 5 4 0 7 1 2 6 7 4 6 5 2 1 0 8 3 6 2 3 1 8 4 7 0 5 and 14 diagonal transversals, which is the minimal number, so a(9)=14.
Links
- Eduard I. Vatutin, About the spectra of numerical characteristics of orthogonal diagonal Latin squares of orders 1-11 (in Russian).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
- Eduard I. Vatutin, Proving list (best known examples).
- Index entries for sequences related to Latin squares and rectangles.
Comments