A355372
Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^3.
Original entry on oeis.org
0, 1, 9, 77, 714, 7374, 85272, 1102968, 15908400, 254866320, 4516084800, 88102382400, 1883199024000, 43885950595200, 1109416142822400, 30273281955302400, 887493144729139200, 27827941161784780800, 929449073791558656000, 32943696020637889536000, 1234946945823695419392000
Offset: 0
-
A355372 := n -> A000292(n)*n!*hypergeom([1 - n, 1, 1], [2, 4], -1):
seq(simplify(A355372(n)), n = 0..20);
-
CoefficientList[Series[Log[(1 - x)/(1 - 2*x)]/ (1 - x)^3,{x,0,20}],x]Table[n!,{n,0,20}] (* Stefano Spezia, Jun 30 2022 *)
A355257
Array read by ascending antidiagonals. A(n, k) = k! * [x^k] log((1 - x) / (1 - 2*x)) / (1 - x)^n, for 0 <= k <= n.
Original entry on oeis.org
0, 0, 1, 0, 1, 3, 0, 1, 5, 14, 0, 1, 7, 29, 90, 0, 1, 9, 50, 206, 744, 0, 1, 11, 77, 406, 1774, 7560, 0, 1, 13, 110, 714, 3804, 18204, 91440, 0, 1, 15, 149, 1154, 7374, 41028, 218868, 1285200, 0, 1, 17, 194, 1750, 13144, 85272, 506064, 3036144, 20603520
Offset: 0
Table A(n, k) begins:
[0] 0, 1, 3, 14, 90, 744, 7560, 91440, 1285200, ... A029767
[1] 0, 1, 5, 29, 206, 1774, 18204, 218868, 3036144, ... A103213
[2] 0, 1, 7, 50, 406, 3804, 41028, 506064, 7084656, ... A355171
[3] 0, 1, 9, 77, 714, 7374, 85272, 1102968, 15908400, ... A355372
[4] 0, 1, 11, 110, 1154, 13144, 164136, 2251920, 33923760, ... A355407
[5] 0, 1, 13, 149, 1750, 21894, 295500, 4320420, 68487120, ... A355414
[6] 0, 1, 15, 194, 2526, 34524, 502644, 7838928, 131198544, ...
[7] 0, 1, 17, 245, 3506, 52054, 814968, 13543704, 239548176, ...
-
egf := n -> log((1 - x)/(1 - 2*x))/(1 - x)^n:
ser := n -> series(egf(n), x, 22):
row := n -> seq(k!*coeff(ser(n), x, k), k = 0..8):
seq(print(row(n)), n = 0..8);
# Alternative:
A := (n, k) -> add(k!*binomial(k + n - 1, k - j - 1)/(j + 1), j = 0..k-1):
seq(print(seq(A(n, k), k = 0..8)), n = 0..7);
-
A[0, 0] = 0; A[n_, k_] := k! * Binomial[n+k-1, k - 1] * HypergeometricPFQ[{1 - k, 1, 1}, {2, n + 1}, -1];
Table[A[n, k], {n, 0, 8}, {k, 0, 8}] // TableForm
A355407
Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^4.
Original entry on oeis.org
0, 1, 11, 110, 1154, 13144, 164136, 2251920, 33923760, 560180160, 10117886400, 199399132800, 4275988617600, 99473802624000, 2502049379558400, 67804022648678400, 1972357507107993600, 61358018782620672000, 2033893411878730752000, 71587670846333773824000, 2666700362750370895872000
Offset: 0
-
egf := log((1 - x)/(1 - 2*x))/(1 - x)^4: ser := series(egf, x, 22):
seq(n!*coeff(ser, x, n), n = 0..20); # Peter Luschny, Jul 01 2022
-
With[{nn=20},CoefficientList[Series[Log[((1-x)/(1-2x))]/(1-x)^4,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Mar 09 2023 *)
A355414
Expansion of the e.g.f. log((1 - x) / (1 - 2*x)) / (1 - x)^5.
Original entry on oeis.org
0, 1, 13, 149, 1750, 21894, 295500, 4320420, 68487120, 1176564240, 21883528800, 440117949600, 9557404012800, 223720054790400, 5634130146624000, 152315974848038400, 4409413104676608000, 136318041562123008000, 4487618159996944896000, 156852415886275726848000, 5803748680475885432832000
Offset: 0
-
A355414 := proc(n)
n!*binomial(n+4,5)*hypergeom([1-n,1,1],[2,6],-1) ;
simplify(%) ;
end proc:
seq(A355414(n),n=0..40) ; # R. J. Mathar, Jul 27 2022
-
With[{nn=20},CoefficientList[Series[Log[((1-x)/(1-2x))]/(1-x)^5,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 02 2025 *)
Showing 1-4 of 4 results.
Comments