A355488 Expansion of g.f. f/(1+2*f) where f is the g.f. of nonempty permutations.
0, 1, 0, 2, 8, 48, 328, 2560, 22368, 216224, 2291456, 26430336, 329805952, 4429255168, 63730438656, 978479250944, 15972310317056, 276292865550336, 5049672714569728, 97245533647568896, 1968395389124714496, 41783552069858877440, 928204423021249003520
Offset: 0
Keywords
Examples
Consider the permutations of [3]: [2,3,1], [3,1,2] and [3,2,1] have 1 component, [1,3,2] and [2,1,3] have 2 components, and [1,2,3] has three components. Thus 3 - 2 + 1 = 2 = a(3). - _Peter Luschny_, Sep 10 2022
Links
- David Callan, Counting Stabilized-Interval-Free Permutations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.1.8.
- FindStat - Combinatorial Statistic Finder, The number of connected components of a permutation.
Programs
-
Maple
a:= n-> (f-> coeff(series(f/(1+2*f), x, n+1), x, n))(add(j!*x^j, j=1..n)): seq(a(n), n=0..23); # Alois P. Heinz, Jul 20 2022
-
Mathematica
nmax=22; f[x_]:=Sum[i! x^i,{i,nmax}]; CoefficientList[Series[f[x]/(1+2f[x]),{x,0,nmax}],x] (* Stefano Spezia, Jul 04 2022 *)
-
SageMath
A = QQ[['t']] f = A([0] + [factorial(n) for n in range(1,30)]).O(30) print(list(f/(1+2*f)))
-
SageMath
# Uses function A059438_triangle. def A355488_list(size): triangle = A059438_triangle(size) return [0] + [sum((-1)^k*t for (k,t) in enumerate(row)) for row in triangle] print(A355488_list(20)) # Peter Luschny, Sep 10 2022
Formula
G.f.: f/(1+2*f) where f is (the g.f. of A000142) - 1.
a(n) = -Sum_{k=1..n} (-1)^k * A059438(n, k) for n >= 1. - Peter Luschny, Sep 10 2022
Comments