cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A355813 Number of solutions (p,q) to 1/s^2 + 1/t^2 = 1/p^2 + 1/q^2 where p,q < t = A355812(n).

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 4, 1, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 4, 2, 1, 2, 2, 6, 2, 2, 4, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 2, 1, 2, 6, 1, 2, 6, 4, 2, 4, 1, 2, 2, 8
Offset: 1

Views

Author

Jianing Song, Jul 18 2022

Keywords

Examples

			A355812(1) = 35. 1/s^2 + 1/35^2 = 1/p^2 + 1/q^2 has one solution, (s,p,q) = (5,7,7), so a(1) = 35.
A355812(2) = 55. 1/s^2 + 1/55^2 = 1/p^2 + 1/q^2 has two solutions, (s,p,q) = (10,11,22) and (10,22,11), so a(2) = 55.
A355812(32) = 210. 1/s^2 + 1/210^2 = 1/p^2 + 1/q^2 has three solutions, (s,p,q) = (30,42,42), (95,114,133) and (95,133,114), so a(32) = 3.
		

Crossrefs

Programs

  • PARI
    b(n) = my(v=[;],r); for(p=1, n-1, for(q=1, n-1, r=1/(1/p^2+1/q^2-1/n^2); if(r==r\1 && issquare(r), v=concat(v,[p;q])))); v
    list(lim) = my(v=[],num); for(n=1, lim, if((num=#b(n))>0, v=concat(v, num))); v

A379895 Number of 1 <= m <= N-1 such that there exists 1 <= x < y <= N-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/N^2, N = A355812(n).

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 4, 1, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 4, 2, 1, 2, 2, 6, 2, 2, 4, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 1, 2, 5, 1, 2, 6, 4, 2, 4, 1, 2, 2, 7
Offset: 1

Views

Author

Jianing Song, Jan 05 2025

Keywords

Comments

Different from A355813 at indices r such that A355812(r) is in A379983.
Let S(N) = {1/x^2 - 1/y^2 : 1 <= x < y <= N}, then N - 1 - a(n) is the size of |S(N) \ S(N-1)|, N = A355812(n). Note that S_N is the number of distinct energy differences within the first N energy levels of a hydrogen atom, and in particular |S(N)| < binomial(N,2) for N >= 35 since a(1) = 1.

Examples

			a(65) = 2 since there are 2 such m for N = A355812(65) = 385:
1/77^2 - 1/385^2 = 1/55^2 - 1/77^2 = 1/70^2 - 1/154^2;
1/154^2 - 1/385^2 = 1/70^2 - 1/77^2.
Note that A355813(65) = 3 because there are two solutions (x,y) corresponding to m = 77.
a(204) = 5 since there are 5 such m for N = A355812(204) = 1015:
1/140^2 - 1/1015^2 = 1/116^2 - 1/203^2;
1/203^2 - 1/1015^2 = 1/116^2 - 1/140^2 = 1/145^2 - 1/203^2;
1/609^2 - 1/1015^2 = 1/525^2 - 1/725^2;
1/700^2 - 1/1015^2 = 1/580^2 - 1/725^2;
1/725^2 - 1/1015^2 = 1/525^2 - 1/609^2 = 1/580^2 - 1/700^2.
Note that A355813(204) = 7 because there are two solutions (x,y) corresponding to m = 203 and to m = 725.
		

Crossrefs

Partial sums give A379979.

Programs

  • PARI
    b(n) = my(v=[], m2); for(y=1, n-1, for(x=1, y-1, m2=1/(1/x^2-1/y^2+1/n^2); if(m2==m2\1 && issquare(m2), v=concat(v, [m2])))); #Set(v) \\ #v gives A355813
    for(n=1, 1500, if(b(n)>0, print1(b(n), ", ")))

A379979 Number of pairs (m,k), 1 <= m < k <= N such that there exists 1 <= x < y < k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2, N = A355812(n).

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 14, 16, 17, 19, 21, 23, 25, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 57, 60, 62, 64, 65, 67, 69, 71, 75, 76, 78, 82, 84, 86, 89, 91, 93, 95, 97, 99, 101, 105, 108, 110, 112, 116, 118, 119, 121, 123, 129, 131, 133, 137, 139
Offset: 1

Views

Author

Jianing Song, Jan 07 2025

Keywords

Comments

Partial sums of A379895.
Let S(N) = {1/x^2 - 1/y^2 : 1 <= x < y <= N}, then binomial(N,2) - a(n) is the size of |S(N)|, N = A355812(n). Note that S_N is the number of distinct energy differences within the first N energy levels of a hydrogen atom.

Examples

			a(3) = 5 since A355812(3) = 56, and there are 5 such pairs (m,k), 1 <= m < k <= 56:
(m,k) = (7,35): 1/5^2 - 1/7^2 = 1/7^2 - 1/35^2;
(m,k) = (11,55): 1/10^2 - 1/22^2 = 1/11^2 - 1/55^2;
(m,k) = (22,55): 1/10^2 - 1/11^2 = 1/22^2 - 1/55^2;
(m,k) = (8,56): 1/7^2 - 1/14^2 = 1/8^2 - 1/56^2;
(m,k) = (14,56): 1/7^2 - 1/8^2 = 1/14^2 - 1/56^2.
Correspondingly, the set {1/x^2 - 1/y^2 : 1 <= x < y <= 56} is of size binomial(56,2) - 5.
		

Crossrefs

Programs

  • PARI
    b(n) = my(v=[], m2); for(y=1, n-1, for(x=1, y-1, m2=1/(1/x^2-1/y^2+1/n^2); if(m2==m2\1 && issquare(m2), v=concat(v, [m2])))); #Set(v) \\ #v gives A355813
    my(s=0); for(n=1, 1500, if(b(n)>0, s+=b(n); print1(s, ", ")))

A379983 Numbers k such that there exists a number 1 <= m <= k-1 and at least two different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2.

Original entry on oeis.org

385, 425, 432, 450, 504, 585, 616, 630, 665, 693, 728, 770, 792, 800, 810, 850, 864, 900, 910, 935, 952, 1008, 1015, 1040, 1155, 1170, 1197, 1232, 1260, 1275, 1287, 1296, 1320, 1330, 1350, 1360, 1365, 1386, 1456, 1512, 1540, 1547, 1584, 1600, 1620, 1672, 1680
Offset: 1

Views

Author

Jianing Song, Jan 07 2025

Keywords

Comments

Numbers k = A355812(r) such that A379895(r) < A355813(r).
The smallest k such that there exists a number 1 <= m <= k-1 and at least three different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2 is k = 1872: we have 1/300^2 - 1/325^2 = 1/468^2 - 1/585^2 = 1/624^2 - 1/1040^2 = 1/720^2 - 1/1872^2. See the Mathematics Stack Exchange link for more examples, and A380150.

Examples

			See a-file for examples.
		

Crossrefs

Programs

  • PARI
    is(n) = my(v=[], m2); for(y=1, n-1, for(x=1, y-1, m2=1/(1/x^2-1/y^2+1/n^2); if(m2==m2\1 && issquare(m2), v=concat(v, [m2])); if(#Set(v)<#v, return(1)))); return(0) \\ See also A379895 for its program

Extensions

More terms from Jinyuan Wang, Jan 08 2025

A355814 Smallest value t such that 1/s^2 + 1/t^2 = 1/p^2 + 1/q^2 has exactly n solutions (p,q) where p,q < t; or -1 if no such t exists.

Original entry on oeis.org

35, 55, 210, 240, 595, 360, 560, 504, 630, 720, 1295, 1848, 1890, 1386, 1680, 2640, 2520, 3024, 5600, 3960, 2730, 4680, 6160, 8775, 9450, 5850, 5460, 5544, 9520, 15470, 5040, 7920, 9240, 25740, 10710, 9360, 13860, 13104, 8190, 17550, 10920, 18720, 15120, 22176
Offset: 1

Views

Author

Jianing Song, Jul 18 2022

Keywords

Comments

Terms beyond a(11) = 1295 other than a(14) = 1386, if not equal to -1, are greater than 1500.
Conjecture: a(n) is divisible by 35 for odd n.

Examples

			t = 35: (s,p,q) = (5,7,7);
t = 55: (s,p,q) = (10,11,22),(10,22,11);
t = 210: (s,p,q) = (30,42,42),(95,114,133),(95,133,114);
t = 240: (s,p,q) = (70,84,112),(70,112,84),(108,135,144),(108,144,135);
t = 595: (s,p,q) = (85,91,221),(85,119,119),(85,221,91),(210,238,357),(210,357,238);
t = 360: (s,p,q) = (20,24,36),(20,36,24),(30,40,45),(30,45,40),(105,126,168),(105,168,126);
t = 560: (s,p,q) = (45,48,126),(70,80,140),(80,112,112),(45,126,48),(70,140,80),(252,315,336),(252,336,315);
t = 504: (s,p,q) = (42,56,63),(54,56,189),(42,63,56),(63,72,126),(63,126,72),(112,144,168),(112,168,144),(54,189,56);
t = 630: (s,p,q) = (35,42,63),(35,63,42),(56,63,120),(56,120,63),(90,126,126),(140,180,210),(140,210,180),(285,342,399),(285,399,342);
t = 720: (s,p,q) = (40,48,72),(40,72,48),(60,80,90),(60,90,80),(165,176,396),(210,252,336),(210,336,252),(165,396,176),(324,405,432),(324,432,405).
		

Crossrefs

Programs

  • PARI
    b(n) = my(v=[;],r); for(p=1, n-1, for(q=1, n-1, r=1/(1/p^2+1/q^2-1/n^2); if(r==r\1 && issquare(r), v=concat(v,[p;q])))); v
    search_up_to(Max,lim) = my(v=vector(Max,i,-1),num); for(n=1, lim, if((num=#b(n))>0 && num<=Max && v[num]==-1, v[num]=n)); v

Extensions

a(12)-a(29) from Bert Dobbelaere, Jul 19 2022
More terms from Jinyuan Wang, Jan 25 2025

A380150 a(n) is the least k such that there exists a number 1 <= m <= k-1 and exactly n different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2.

Original entry on oeis.org

2, 35, 385, 1872, 5670, 30030
Offset: 0

Views

Author

Jinyuan Wang and Jianing Song, Jan 13 2025

Keywords

Comments

a(n) is also the least k such that there exists a number 1 <= m <= k-1 and at least n different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2: suppose on the contrary that the latter number is k' < a(n), then 1/x^2 - 1/y^2 = 1/m^2 - 1/k'^2 for some 1 <= m <= k'-1 and exactly n' > n pairs (x_1,y_1), ..., (x_{n'},y_{n'}) with 1 <= y_1 < ... < y_{n'} <= k'-1, so 1/x^2 - 1/y^2 = 1/(x_{n+1})^2 - 1/(y_{n+1})^2 has exactly n solutions (x_1,y_1), ..., (x_n,y_n) with 1 <= x < y <= y_{n+1}-1, which implies that a(n) <= y_{n+1} <= y_{n'} <= k'-1, a contradiction.
For a similar reason, this sequence is strictly increasing: if 1/x^2 - 1/y^2 = 1/m^2 - 1/a(n)^2 for some 1 <= m <= a(n)-1 and exactly n pairs (x_1,y_1), ... (x_n,y_n) with 1 <= y_1 < ... < y_n <= a(n)-1, then 1/x^2 - 1/y^2 = 1/(x_n)^2 - 1/(y_n)^2 has exactly n-1 solutions (x_1,y_1), ..., (x_{n-1},y_{n-1}) with 1 <= x < y <= y_n-1, so a(n-1) <= y_n.
a(6) <= 152152, a(7) <= 318240, a(8) <= 445536, a(9) <= 1191190 (see the Mathematics Stack Exchange link).

Examples

			The smallest k such that there exists a number 1 <= m <= k-1 and exactly three different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2 is k = 1872: we have 1/300^2 - 1/325^2 = 1/468^2 - 1/585^2 = 1/624^2 - 1/1040^2 = 1/720^2 - 1/1872^2. See the Mathematics Stack Exchange link for more examples.
		

Crossrefs

Programs

  • PARI
    f(k) = my(v=List([]), m2); for(y=1, k-1, for(x=1, y-1, m2=1/(1/x^2-1/y^2+1/k^2); if(m2==m2\1 && issquare(m2), listput(v, m2)))); if(#v, vecmax(vector(#v, i, sum(j=1, #v, v[i]==v[j]))), 0); \\ Gives the maximum number of pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2, where m runs through 1..k-1
    lista(nn) = my(k=1); for(n=0, nn, until(f(k)==n, k++); print1(k, ", "));
Showing 1-6 of 6 results.