Original entry on oeis.org
1, 3, 4, 6, 8, 14, 16, 17, 22, 25, 27, 28, 30, 38, 40, 67, 68, 74, 78, 82, 102, 104, 109, 110, 112, 126, 128, 132, 136, 140, 160, 164, 188
Offset: 1
-
z = 1000000;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}]; (* A137803 *)
v1 = Complement[Range[Max[v]], v]; (* A137804 *)
t1 = Intersection[u, v]; (* A356052 *)
t2 = Table[u[[v[[n]]]], {n, 1, z/2}]; (* A356056 *)
length = Min[Length[t1], Length[t2]]
t = Take[t2, length] - Take[t1, length];
{Min[t], Max[t]}
Flatten[Position[t, 0]]
A346308
Intersection of Beatty sequences for sqrt(2) and sqrt(3).
Original entry on oeis.org
1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, 36, 38, 39, 41, 43, 45, 46, 48, 50, 53, 55, 57, 60, 62, 65, 67, 69, 72, 74, 76, 77, 79, 83, 84, 86, 90, 91, 93, 96, 98, 100, 103, 107, 110, 114, 117, 121, 124, 128, 131, 135, 138, 140, 142, 145, 147, 148, 152, 154
Offset: 1
Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...).
Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...).
a(n) = (1,5,8,12,...).
In the notation in Comments:
(1) u ^ v = (1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308.
(2) u ^ v' = (2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, 35, ...) = A356085.
(3) u' ^ v = (3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, ...) = A356086.
(4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087.
-
z = 200;
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *)
v1 = Take[Complement[Range[1000], v], z] (* A054406 *)
t1 = Intersection[u, v] (* A346308 *)
t2 = Intersection[u, v1] (* A356085 *)
t3 = Intersection[u1, v] (* A356086 *)
t4 = Intersection[u1, v1] (* A356087 *)
-
from math import isqrt
from itertools import count, islice
def A346308_gen(): # generator of terms
return filter(lambda n:n == isqrt(3*(isqrt(n**2//3)+1)**2),(isqrt(n*n<<1) for n in count(1)))
A346308_list = list(islice(A346308_gen(),30)) # Chai Wah Wu, Aug 06 2022
Original entry on oeis.org
1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, 31, 33, 36, 39, 42, 45, 48, 50, 53, 56, 59, 62, 63, 66, 69, 72, 74, 77, 80, 83, 86, 89, 91, 93, 96, 98, 101, 104, 107, 110, 113, 115, 118, 121, 124, 125, 128, 131, 134, 137, 140, 142, 145, 148, 151, 154, 156, 158, 161
Offset: 1
(1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, 31, ...) = A356056
(2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, 35, ...) = A356057
(3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058
(4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059
-
z = 800;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *)
Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *)
Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *)
Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *)
Original entry on oeis.org
2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, 35, 38, 41, 43, 46, 49, 52, 55, 57, 60, 65, 67, 70, 73, 76, 79, 82, 84, 87, 90, 94, 97, 100, 103, 106, 108, 111, 114, 117, 120, 123, 127, 130, 132, 135, 138, 141, 144, 147, 149, 152, 155, 159, 162, 165, 168, 171, 173
Offset: 1
(1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, 31, ...) = A356056
(2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, 35, ...) = A356057
(3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058
(4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059
-
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *)
Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *)
Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *)
Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *)
Original entry on oeis.org
3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, 75, 81, 88, 95, 102, 109, 116, 122, 129, 136, 143, 150, 153, 160, 167, 174, 180, 187, 194, 201, 208, 215, 221, 225, 232, 238, 245, 252, 259, 266, 273, 279, 286, 293, 300, 303, 310, 317, 324, 331, 338, 344, 351, 358
Offset: 1
(1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, ...) = A356056
(2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, ...) = A356057
(3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058
(4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059
-
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *)
Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *)
Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *)
Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *)
Original entry on oeis.org
6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, 85, 92, 99, 105, 112, 119, 126, 133, 139, 146, 157, 163, 170, 177, 184, 191, 198, 204, 211, 218, 228, 235, 242, 249, 256, 262, 269, 276, 283, 290, 297, 307, 314, 320, 327, 334, 341, 348, 355, 361, 368, 375, 385, 392
Offset: 1
(1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, 31, ...) = A356056
(2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, 35, ...) = A356057
(3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058
(4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059
-
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *)
Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *)
Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *)
Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *)
Original entry on oeis.org
2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, 39, 41, 43, 46, 48, 50, 52, 56, 60, 62, 67, 69, 73, 77, 79, 83, 87, 90, 94, 96, 98, 100, 104, 106, 108, 110, 113, 115, 117, 121, 123, 125, 127, 131, 134, 138, 140, 142, 144, 148, 152, 154, 159, 161, 165, 169, 171
Offset: 1
(1) u ^ v = (1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, ...) = A356052
(2) u ^ v' = (2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, ...) = A356053
(3) u' ^ v = (3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, ...) = A356054
(4) u' ^ v' = (6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, ...) = A356055
-
z = 250;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Intersection[u, v] (* A356052 *)
Intersection[u, v1] (* A356053 *)
Intersection[u1, v] (* A356054 *)
Intersection[u1, v1] (* A356055 *)
Original entry on oeis.org
3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, 78, 88, 95, 99, 105, 109, 112, 116, 122, 126, 133, 139, 143, 153, 160, 170, 174, 187, 191, 204, 208, 218, 225, 235, 245, 252, 256, 262, 266, 269, 273, 279, 283, 290, 300, 310, 317, 327, 331, 334, 338, 344, 348
Offset: 1
(1) u ^ v = (1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, ...) = A356052
(2) u ^ v' = (2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, ...) = A356053
(3) u' ^ v = (3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, ...) = A356054
(4) u' ^ v' = (6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, ...) = A356055
-
z = 250;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Intersection[u, v] (* A356052 *)
Intersection[u, v1] (* A356053 *)
Intersection[u1, v] (* A356054 *)
Intersection[u1, v1] (* A356055 *)
Original entry on oeis.org
6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, 81, 85, 92, 102, 119, 129, 136, 146, 150, 157, 163, 167, 177, 180, 184, 194, 198, 201, 211, 215, 221, 228, 232, 238, 242, 249, 259, 276, 286, 293, 297, 303, 307, 314, 320, 324, 341, 351, 355, 358, 368, 372, 378, 385
Offset: 1
(1) u ^ v = (1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, ...) = A356052
(2) u ^ v' = (2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, ...) = A356053
(3) u' ^ v = (3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, ...) = A356054
(4) u' ^ v' = (6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, ...) = A356055
-
z = 250;
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Intersection[u, v] (* A356052 *)
Intersection[u, v1] (* A356053 *)
Intersection[u1, v] (* A356054 *)
Intersection[u1, v1] (* A356055 *)
Showing 1-9 of 9 results.
Comments