A355776
Partition triangle read by rows. A statistic of permutations whose Lehmer code is nonmonotonic, refining triangle A356116.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 3, 2, 5, 0, 0, 6, 10, 22, 24, 16, 0, 0, 10, 20, 12, 61, 162, 29, 102, 150, 42, 0, 0, 15, 35, 49, 135, 432, 246, 273, 391, 1389, 461, 388, 698, 99, 0, 0, 21, 56, 90, 52, 260, 982, 1288, 740, 827, 1150, 4974, 2745, 5778, 482, 2057, 8924, 4148, 1333, 2764, 219, 0
Offset: 0
Table T(n, k) starts:
[0] 0;
[1] 0;
[2] 0, 0;
[3] 0, 1, 0;
[4] 0, [3, 2], 5, 0;
[5] 0, [6, 10], [22, 24], 16, 0;
[6] 0, [10, 20, 12], [61, 162, 29], [102, 150], 42, 0;
[7] 0, [15, 35, 49], [135, 432, 246, 273], [391, 1389, 461], [388, 698], 99, 0;
Summing the bracketed terms reduces the triangle to A356116.
.
The permutations whose Lehmer code is nonmonotonic, in the case n = 4, k = 1 are: 1243, 1324, 1423, which map to the partition [3, 1] and 1342, 2143, which map to the partition [2, 2]. Thus A356116(4, 1) = 3 + 2 = 5.
.
The cardinality of the preimage of the partitions, i.e. the number of permutations whose Lehmer code is nonmonotonic, are the terms of the sequence. Here row 6:
[6] => 0
[5, 1] => 10
[4, 2] => 20
[3, 3] => 12
[4, 1, 1] => 61
[3, 2, 1] => 162
[2, 2, 2] => 29
[3, 1, 1, 1] => 102
[2, 2, 1, 1] => 150
[2, 1, 1, 1, 1] => 42
[1, 1, 1, 1, 1, 1] => 0
-
import collections
def perm_lehmer_nonmono_stats(n):
res = collections.defaultdict(int)
for p in Permutations(n):
l = p.to_lehmer_code()
if all(x >= y for x, y in zip(l, l[1:])): continue
c = [l.count(i) for i in range(len(p)) if i in l]
res[Partition(reversed(sorted(c)))] += 1
return sorted(res.items(), key=lambda x: len(x[0]))
@cached_function
def A355776_row(n):
if n < 2: return [0]
S = perm_lehmer_nonmono_stats(n)
return [0] + [s[1] for s in S] + [0]
def A355776(n, k): return A355776_row(n)[k] if n > 0 else 0
for n in range(0, 8): print(A355776_row(n))
A355777
Partition triangle read by rows. A statistic of permutations given by their Lehmer code refining Euler's triangle A173018.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 1, 7, 4, 11, 1, 1, 11, 15, 32, 34, 26, 1, 1, 16, 26, 15, 76, 192, 34, 122, 180, 57, 1, 1, 22, 42, 56, 156, 474, 267, 294, 426, 1494, 496, 423, 768, 120, 1, 1, 29, 64, 98, 56, 288, 1038, 1344, 768, 855, 1206, 5142, 2829, 5946, 496, 2127, 9204, 4288, 1389, 2904, 247, 1
Offset: 0
The table T(n, k) begins:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 1, 4, 1;
[4] 1, [7, 4], 11, 1;
[5] 1, [11, 15], [32, 34], 26, 1;
[6] 1, [16, 26, 15], [76, 192, 34], [122, 180], 57, 1;
[7] 1, [22, 42, 56], [156, 474, 267, 294], [426, 1494, 496], [423, 768], 120, 1;
Summing the bracketed terms reduces the triangle to Euler's triangle A173018.
.
The Lehmer mapping of the permutations to the partitions, case n = 4, k = 1:
1243, 1324, 1423, 2134, 2341, 3124, 4123 map to the partition [3, 1] and
1342, 2143, 2314, 3412 map to the partition [2, 2]. Thus A173018(4, 1) = 7 + 4 = 11.
.
The cardinality of the preimage of the partitions, i.e. the number of permutations which map to the same partition, are the terms of the sequence. Here row 6:
[6] => 1
[5, 1] => 16
[4, 2] => 26
[3, 3] => 15
[4, 1, 1] => 76
[3, 2, 1] => 192
[2, 2, 2] => 34
[3, 1, 1, 1] => 122
[2, 2, 1, 1] => 180
[2, 1, 1, 1, 1] => 57
[1, 1, 1, 1, 1, 1] => 1
- Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker and Amanda Welch, Homomesies on permutations -- an analysis of maps and statistics in the FindStat database, arXiv:2206.13409 [math.CO], 2022. (Def. 4.20 and Prop. 4.22.)
- Florent Hivert, Jean-Christophe Novelli and Jean-Yves Thibon, Multivariate generalizations of the Foata-Schützenberger equidistribution, arXiv:math/0605060 [math.CO], 2006.
- Florent Hivert, Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition, Statistics Database St000275, 2015.
- Peter Luschny, Permutations with Lehmer, a SageMath Jupyter Notebook.
- Wikipedia, Lehmer code.
-
import collections
@cached_function
def eulerian_stat(n):
res = collections.defaultdict(int)
for p in Permutations(n):
c = p.to_lehmer_code()
l = [c.count(i) for i in range(len(p)) if i in c]
res[Partition(reversed(sorted(l)))] += 1
return sorted(res.items(), key=lambda x: len(x[0]))
@cached_function
def A355777_row(n): return [v[1] for v in eulerian_stat(n)]
def A355777(n, k): return A355777_row(n)[k]
for n in range(8): print(A355777_row(n))
A356262
Partition triangle read by rows counting the irreducible permutations sorted by the partition type of their Lehmer code.
Original entry on oeis.org
1, 1, 0, 1, 0, 2, 1, 0, 2, 1, 9, 1, 0, 2, 3, 24, 17, 24, 1, 0, 2, 3, 3, 98, 29, 23, 156, 91, 55, 1, 0, 2, 8, 4, 181, 43, 157, 113, 1085, 243, 418, 714, 360, 118, 1, 0, 2, 7, 11, 4, 300, 61, 317, 461, 398, 2985, 536, 1822, 4366, 417, 7684, 1522, 3904, 2788, 1262, 245, 1
Offset: 0
[0] 1;
[1] 1;
[2] 0, 1;
[3] 0, 2, 1;
[4] 0, [2, 1], 9, 1;
[5] 0, [2, 3], [24, 17], 24, 1;
[6] 0, [2, 3, 3], [98, 29, 23], [156, 91], 55, 1;
[7] 0, [2, 8, 4], [181, 43, 157, 113], [1085, 243, 418], [714, 360], 118, 1;
Summing the bracketed terms reduces the triangle to A356263 .
.
The Lehmer mapping of the irreducible permutations to the partitions, case n = 4, k = 1: 2341 and 4123 map to the partition [3, 1], and 3412 map to the partition [2, 2]. Thus A356263(4, 1) = 2 + 1 = 3. Compare with the example in A355777.
.
The partition mapping of row 4:
[4] => 0
[3, 1] => 2
[2, 2] => 1
[2, 1, 1] => 9
[1, 1, 1, 1] => 1
-
import collections
def reducible(p) -> bool:
return any(i for i in range(1, p.size())
if all(p(j) < p(k)
for j in range(1, i + 1)
for k in range(i + 1, p.size() + 1)
) )
def perm_irreducible_stats(n: int):
res = collections.defaultdict(int)
for p in Permutations(n):
if reducible(p): continue
l = p.to_lehmer_code()
c = [l.count(i) for i in range(len(p)) if i in l]
res[Partition(reversed(sorted(c)))] += 1
return sorted(res.items(), key=lambda x: len(x[0]))
@cached_function
def A356262_row(n):
if n <= 1: return [1]
return [0] + [v[1] for v in perm_irreducible_stats(n)]
def A356262(n, k): return A356262_row(n)[k]
for n in range(0, 8): print(A356262_row(n))
A356263
Triangle read by rows. The reduced triangle of the partition triangle of irreducible permutations (A356262). T(n, k) for n >= 1 and 0 <= k < n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 9, 1, 0, 5, 41, 24, 1, 0, 8, 150, 247, 55, 1, 0, 14, 494, 1746, 1074, 118, 1, 0, 24, 1537, 10126, 13110, 4050, 245, 1, 0, 43, 4642, 52129, 122521, 79396, 14111, 500, 1, 0, 77, 13745, 248494, 967644, 1126049, 425471, 46833, 1011, 1
Offset: 1
[1] [1]
[2] [0, 1]
[3] [0, 2, 1]
[4] [0, 3, 9, 1]
[5] [0, 5, 41, 24, 1]
[6] [0, 8, 150, 247, 55, 1]
[7] [0, 14, 494, 1746, 1074, 118, 1]
[8] [0, 24, 1537, 10126, 13110, 4050, 245, 1]
[9] [0, 43, 4642, 52129, 122521, 79396, 14111, 500, 1]
[10][0, 77, 13745, 248494, 967644, 1126049, 425471, 46833, 1011, 1]
.
The 5 irreducible permutations counted with T(5, 2) are 23451, 51234, 31524, 34512, and 45123.
Showing 1-4 of 4 results.
Comments