cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327858 Greatest common divisor of the arithmetic derivative and the primorial base exp-function: a(n) = gcd(A003415(n), A276086(n)).

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 5, 1, 3, 6, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 10, 1, 1, 1, 10, 15, 3, 1, 1, 1, 1, 1, 14, 1, 6, 5, 1, 21, 2, 1, 1, 1, 1, 3, 3, 25, 1, 7, 14, 15, 10, 7, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 3, 3, 18, 1, 1, 3, 2, 1, 1, 1, 1, 3, 5, 5, 18, 1, 1, 1, 6, 1, 1, 1, 2, 15, 2, 35, 1, 1, 2, 3, 2, 49, 6, 1, 1, 7, 15, 35, 1, 7, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Sep 30 2019

Keywords

Comments

Sequence contains only terms of A048103.
Proof that A046337 gives the positions of even terms: see Charlie Neder's Feb 25 2019 comment in A235992 and recall that A276086 is never a multiple of 4, as it is a permutation of A048103, and furthermore it toggles the parity. See also comment in A327860. - Antti Karttunen, May 01 2022

Crossrefs

Cf. A046337 (positions of even terms), A356311 (positions of 1's), A356310 (their characteristic function).
Cf. also A085731, A324198, A328572 [= gcd(A276086(n), A327860(n))], A345000, A373145, A373843.

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12], f, g}, f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; g[n_] := Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #} &@ IntegerDigits[n, b]; Array[GCD[f@ #, g@ #] &, 105]] (* Michael De Vlieger, Sep 30 2019 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A327858(n) = gcd(A003415(n),A276086(n));

Formula

a(n) = gcd(A003415(n), A276086(n)).
a(p) = 1 for all primes p.
a(n) = A276086(A351234(n)). - Antti Karttunen, May 01 2022
From Antti Karttunen, Dec 05 2022: (Start)
For n >= 2, a(n) = gcd(A003415(n), A328382(n)).
(End)
For n >= 2, a(n) = A358669(n) / A359423(n). For n >= 1, A356299(n) | a(n). - Antti Karttunen, Jan 09 2023
a(n) = gcd(A003415(n), A373849(n)) = gcd(A276086(n), A369971(n)) = A373843(A276086(n)). - Antti Karttunen, Jun 21 & 23 2024

Extensions

Verbal description added to the definition by Antti Karttunen, May 01 2022

A046337 Odd numbers with an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 9, 15, 21, 25, 33, 35, 39, 49, 51, 55, 57, 65, 69, 77, 81, 85, 87, 91, 93, 95, 111, 115, 119, 121, 123, 129, 133, 135, 141, 143, 145, 155, 159, 161, 169, 177, 183, 185, 187, 189, 201, 203, 205, 209, 213, 215, 217, 219, 221, 225, 235, 237, 247, 249, 253, 259
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Intersection of A005408 and A028260.
Setwise difference A005408 \ A067019.
Setwise difference A028260 \ A063745.
Union of A359161 and A359163.
Union of A327862 and A360110.
Subsequence of A345452, of A356312 and of A359371.
Positions of positive terms in A166698, positions of even terms in A327858 and A356299.
Subsequences: A002557, A046315 (odd semiprimes), A056913, A359596, A359607, A359608 (without its term 2).
Cf. A000035, A008836, A046338, A046470, A353557 (characteristic function), A358777.
Cf. also A036349, A297845.

Programs

  • Mathematica
    Select[Range[1,301,2],EvenQ[PrimeOmega[#]]&] (* Harvey P. Dale, Jul 25 2011 *)
  • PARI
    lista(nn) = {forstep(n=1, nn, 2, if (bigomega(n) % 2 == 0, print1(n, ", ")));} \\ Michel Marcus, Jul 04 2015

Formula

{k | A000035(k) > 0 and A008836(k) > 0}. - Antti Karttunen, Jan 13 2023
Showing 1-2 of 2 results.