A356484 a(n) is the hafnian of a symmetric Toeplitz matrix M(2*n) whose first row consists of prime(2*n), prime(2*n-1), ..., prime(1).
1, 2, 44, 5210, 1368900, 604109562, 535920536336, 728155179271474, 1103827431509790216, 2651375713654260218986, 7537958658258053003685636
Offset: 0
Examples
a(2) = 44 because the hafnian of 7 5 3 2 5 7 5 3 3 5 7 5 2 3 5 7 equals M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 44.
Links
- Wikipedia, Hafnian
- Wikipedia, Symmetric matrix
- Wikipedia, Toeplitz Matrix
Crossrefs
Programs
-
Maple
haf:= proc(A) local n, s, Pairpart, p; Pairpart := proc(L) local j, t; if L = {} then return {{}}; end if; {seq(seq({{L[1], L[j]}} union t, t = procname(L minus {L[1], L[j]})), j = 2 .. nops(L))}; end proc; n := LinearAlgebra:-Dimension(A); if n[1] <> n[2] then error "must be square matrix"; end if; n := n[1]; if n::odd then error "dimension of matrix must be even"; end if; add(mul(A[s[1], s[2]], s = p), p = Pairpart({$ (1 .. n)})); end proc: f:= proc(n) local i; haf(LinearAlgebra:-ToeplitzMatrix([seq(ithprime(i),i=2*n..1,-1)],symmetric)) end proc: f(0):= 1: map(f, [$0..7]); # Robert Israel, Oct 13 2023
-
Mathematica
k[i_]:=Prime[i]; M[i_, j_, n_]:=Part[Part[ToeplitzMatrix[Reverse[Array[k, n]]], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
-
PARI
tm(n) = my(m = matrix(n, n, i, j, if (i==1, prime(n-j+1), if (j==1, prime(n-i+1))))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
Extensions
a(6) from Michel Marcus, May 02 2023
a(7)-a(9) from Robert Israel, Oct 13 2023
a(10) from Pontus von Brömssen, Oct 14 2023
Comments