A356490 a(n) is the determinant of a symmetric Toeplitz matrix M(n) whose first row consists of prime(1), prime(2), ..., prime(n).
1, 2, -5, 12, -19, -22, 1143, -4284, 14265, -46726, -84405, 1306096, 32312445, 522174906, 4105967871, 5135940112, -642055973735, -2832632334858, 14310549077571, 380891148658140, 4888186898996125, -49513565563840210, 383405170118692791, -2517836083641473036, -3043377347606882055
Offset: 0
Keywords
Examples
For n = 1 the matrix M(1) is 2 with determinant a(1) = 2. For n = 2 the matrix M(2) is 2, 3 3, 2 with determinant a(2) = -5. For n = 3 the matrix M(3) is 2, 3, 5 3, 2, 3 5, 3, 2 with determinant a(3) = 12.
Links
- Mathematics Stack Exchange, Determinant of a Toeplitz matrix
- Wikipedia, Toeplitz Matrix
Crossrefs
Programs
-
Maple
A356490 := proc(n) local T,c ; if n =0 then return 1 ; end if; T := LinearAlgebra[ToeplitzMatrix]([seq(ithprime(c),c=1..n)],n,symmetric) ; LinearAlgebra[Determinant](T) ; end proc: seq(A356490(n),n=0..15) ; # R. J. Mathar, Jan 31 2023
-
Mathematica
k[i_]:=Prime[i]; M[ n_]:=ToeplitzMatrix[Array[k, n]]; a[n_]:=Det[M[n]]; Join[{1},Table[a[n],{n,24}]]
-
PARI
a(n) = matdet(apply(prime, matrix(n,n,i,j,abs(i-j)+1))); \\ Michel Marcus, Aug 12 2022
-
Python
from sympy import Matrix, prime def A356490(n): return Matrix(n,n,[prime(abs(i-j)+1) for i in range(n) for j in range(n)]).det() # Chai Wah Wu, Aug 12 2022
Comments