A356483
a(n) is the hafnian of a symmetric Toeplitz matrix M(2*n) whose first row consists of prime(1), prime(2), ..., prime(2*n).
Original entry on oeis.org
1, 3, 55, 2999, 347391, 69702479, 22441691645, 10776262328919, 7190279422736061, 6439969796874334809, 7447188585071730451961
Offset: 0
a(2) = 55 because the hafnian of
2 3 5 7
3 2 3 5
5 3 2 3
7 5 3 2
equals M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 55.
-
k[i_]:=Prime[i]; M[i_, j_, n_]:=Part[Part[ToeplitzMatrix[Array[k, n]], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
-
tm(n) = my(m = matrix(n, n, i, j, if (i==1, prime(j), if (j==1, prime(i))))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m;
a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
A356491
a(n) is the permanent of a symmetric Toeplitz matrix M(n) whose first row consists of prime(1), prime(2), ..., prime(n).
Original entry on oeis.org
1, 2, 13, 184, 4745, 215442, 14998965, 1522204560, 208682406913, 37467772675962, 8809394996942597, 2597094620811897948, 954601857873086235553, 428809643170145564168434, 229499307540038336275308821, 144367721963876506217872778284, 106064861375232790889279725340713
Offset: 0
For n = 1 the matrix M(1) is
2
with permanent a(1) = 2.
For n = 2 the matrix M(2) is
2, 3
3, 2
with permanent a(2) = 13.
For n = 3 the matrix M(3) is
2, 3, 5
3, 2, 3
5, 3, 2
with permanent a(3) = 184.
Cf.
A005843 (trace of the matrix M(n)),
A309131 (k-superdiagonal sum of the matrix M(n)),
A356483 (hafnian of the matrix M(2*n)),
A356490 (determinant of the matrix M(n)).
-
A356491 := proc(n)
local c ;
if n =0 then
return 1 ;
end if;
LinearAlgebra[ToeplitzMatrix]([seq(ithprime(c),c=1..n)],n,symmetric) ;
LinearAlgebra[Permanent](%) ;
end proc:
seq(A356491(n),n=0..15) ; # R. J. Mathar, Jan 31 2023
-
k[i_]:=Prime[i]; M[ n_]:=ToeplitzMatrix[Array[k, n]]; a[n_]:=Permanent[M[n]]; Join[{1},Table[a[n],{n,16}]]
-
a(n) = matpermanent(apply(prime, matrix(n,n,i,j,abs(i-j)+1))); \\ Michel Marcus, Aug 12 2022
-
from sympy import Matrix, prime
def A356491(n): return Matrix(n,n,[prime(abs(i-j)+1) for i in range(n) for j in range(n)]).per() if n else 1 # Chai Wah Wu, Aug 12 2022
Showing 1-2 of 2 results.
Comments