A371713
Expansion of g.f. A(x) satisfying A(x)^2 = A( A(x)*(x + A(x)^2) ).
Original entry on oeis.org
1, 1, 3, 10, 39, 161, 698, 3126, 14361, 67287, 320319, 1544894, 7532756, 37070678, 183892128, 918539002, 4615979653, 23321497085, 118391352149, 603585987830, 3089089467145, 15864868600157, 81737410659710, 422342729686590, 2188088882282654, 11363944086758244, 59152933495794684
Offset: 1
G.f.: A(x) = x + x^2 + 3*x^3 + 10*x^4 + 39*x^5 + 161*x^6 + 698*x^7 + 3126*x^8 + 14361*x^9 + 67287*x^10 + 320319*x^11 + 1544894*x^12 + ...
where A(x)^2 = A( A(x)*(x + A(x)^2) ).
RELATED SERIES.
(1) A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 26*x^5 + 107*x^6 + 460*x^7 + 2052*x^8 + 9394*x^9 + 43903*x^10 + 208570*x^11 + 1004263*x^12 + ...
(2) A(x)*(x + A(x)^2) = x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 88*x^6 + 374*x^7 + 1652*x^8 + 7512*x^9 + 34920*x^10 + 165198*x^11 + 792700*x^12 + ...
(3) Let R(x) be the series reversion of A(x), R(A(x)) = x, then
R(x) = x - x^2 - x^3 - x^5 - x^9 - x^17 - x^33 - x^65 + ... + -x^(2^n+1) + ...
and R(x) = R(x^2)/x - x^2.
SPECIFIC VALUES.
A(1/6) = 0.2367013365733826841498068726305704943941...
A(1/7) = 0.1823951399847440022737563157206822905959...
A(1/8) = 0.1515149787834965771672802816841610180120...
A(1/9) = 0.1303567976332909027691102900878848253626...
A(1/6)^2 = A(t) at t = A(1/6)*(1/6 + A(1/6)^2) = 0.05271201227864865...
A(1/7)^2 = A(t) at t = A(1/7)*(1/7 + A(1/7)^2) = 0.03212436773155026...
-
nmax = 30; A[] = 0; Do[A[x] = x + Sum[A[x]^(2^k + 1), {k, 0, Log[nmax]/Log[2]}] + O[x]^(nmax + 1) // Normal, nmax + 1]; Rest[CoefficientList[A[x], x]] (* Vaclav Kotesovec, Apr 05 2024 *)
-
/* G.f. Series_Reversion(x - x*Sum_{n>=0} x^(2^n)) */
{a(n) = my(A = serreverse(x - x*sum(k=0,#binary(n), x^(2^k)) +x*O(x^n))); polcoeff(A,n)}
for(n=1, 30, print1(a(n), ", "))
-
{a(n) = my(A=[1],F); for(i=1,n, A=concat(A,0); F=x*Ser(A);
A[#A] = -polcoeff( F^2 - subst(F,x, F*(x + F^2)), #A+1) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
A370439
Expansion of g.f. A(x) satisfying A(x) = A( x*A(x)^2 + 3*x*A(x)^3 )^(1/3).
Original entry on oeis.org
1, 3, 9, 30, 126, 648, 3591, 19953, 110079, 610500, 3440493, 19742616, 114918138, 675417474, 3996992547, 23791052862, 142393544757, 856746349992, 5179722791274, 31449875426622, 191678795532801, 1172198278949454, 7190652243631437, 44235165115911312, 272837082264574914
Offset: 1
G.f.: A(x) = x + 3*x^2 + 9*x^3 + 30*x^4 + 126*x^5 + 648*x^6 + 3591*x^7 + 19953*x^8 + 110079*x^9 + 610500*x^10 + 3440493*x^11 + 19742616*x^12 + ...
where A(x)^3 = A( x*A(x)^2 + 3*x*A(x)^3 ).
-
{a(n) = my(A=[0,1]); for(i=1,n, A=concat(A,0);
F=Ser(A); A[#A] = polcoeff(subst(F,x,x*F^2 + 3*x*F^3) - F^3,#A+1) );A[n+1]}
for(n=1,30, print1(a(n),", "))
A370546
Expansion of g.f. satisfying A(x) = A( x*A(x)^4 + 5*x*A(x)^5 )^(1/5).
Original entry on oeis.org
1, 5, 25, 125, 625, 3130, 15800, 81625, 443125, 2609375, 16984500, 121023875, 914745625, 7093331250, 55129765625, 424092582500, 3212747690625, 23952422065625, 176059004593750, 1279867522656250, 9237023201350000, 66454031585359375, 478427499949687500, 3458191615224687500
Offset: 1
G.f.: A(x) = x + 5*x^2 + 25*x^3 + 125*x^4 + 625*x^5 + 3130*x^6 + 15800*x^7 + 81625*x^8 + 443125*x^9 + 2609375*x^10 + 16984500*x^11 + 121023875*x^12 + ...
where A(x)^5 = A( x*A(x)^4 + 5*x*A(x)^5 ).
-
{a(n) = my(A=[0,1]); for(i=1,n, A=concat(A,0);
F=Ser(A); A[#A] = polcoeff(subst(F,x,x*F^4 + 5*x*F^5) - F^5,#A+3) );A[n+1]}
for(n=1,30, print1(a(n),", "))
A372534
Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x) + 3*x*A(x)^2 ).
Original entry on oeis.org
1, 3, 12, 63, 372, 2322, 15102, 101439, 698340, 4900914, 34931808, 252185238, 1840242546, 13551558336, 100579610790, 751610709279, 5650352546628, 42702935642082, 324256445598816, 2472613511240754, 18926918200655928, 145379893260849876, 1120198916414984148, 8656357557290045382
Offset: 1
G.f.: A(x) = x + 3*x^2 + 12*x^3 + 63*x^4 + 372*x^5 + 2322*x^6 + 15102*x^7 + 101439*x^8 + 698340*x^9 + 4900914*x^10 + 34931808*x^11 + 252185238*x^12 + ...
where A(x)^2 = A( x*A(x) + 3*x*A(x)^2 ).
Also,
A(x) = x * (1 + 3*A(x)) * (1 + 3*A(x)^2) * (1 + 3*A(x)^4) * (1 + 3*A(x)^8) * (1 + 3*A(x)^16) * ... * (1 + 3*A(x)^(2^n)) * ...
RELATED SERIES.
A(x)^2 = x^2 + 6*x^3 + 33*x^4 + 198*x^5 + 1266*x^6 + 8388*x^7 + 57033*x^8 + 396090*x^9 + 2798718*x^10 + 20056824*x^11 + 145438146*x^12 + ...
x*A(x) + 3*x*A(x)^2 = x^2 + 6*x^3 + 30*x^4 + 162*x^5 + 966*x^6 + 6120*x^7 + 40266*x^8 + 272538*x^9 + 1886610*x^10 + 13297068*x^11 + ...
SPECIFIC VALUES.
A(1/9) = 0.20017482594200170883488591841314367600913783...
A(1/10) = 0.15939222988059047986391116283589184626082823...
A(1/11) = 0.13474373940944085584086064879196682498369755...
A(1/12) = 0.11741441277153705906655653078308588616286400...
-
{a(n) = my(A = serreverse( x/prod(k=0, #binary(n), 1 + 3*x^(2^k) +x*O(x^n)) ));
polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
-
{a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0); F=Ser(A);
A[#A] = polcoeff( subst(F, x, x*F*(1 + 3*F) ) - F^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
A372578
Expansion of g.f. A(x) satisfying A( x*A(x) + 2*A(x)^3 ) = A(x)^2.
Original entry on oeis.org
1, 2, 10, 60, 406, 2940, 22304, 174960, 1407582, 11550396, 96299472, 813433712, 6946442776, 59872428672, 520174647424, 4550665293920, 40052871669422, 354421196057404, 3151211548631856, 28137903707808048, 252219507331523688, 2268719274696321856, 20472066335198022080, 185268984285773695200
Offset: 1
G.f.: A(x) = x + 2*x^2 + 10*x^3 + 60*x^4 + 406*x^5 + 2940*x^6 + 22304*x^7 + 174960*x^8 + 1407582*x^9 + 11550396*x^10 + 96299472*x^11 + 813433712*x^12 + ...
where A( x*A(x) + 2*A(x)^3 ) = A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 24*x^4 + 160*x^5 + 1152*x^6 + 8704*x^7 + 68088*x^8 + 546656*x^9 + 4478720*x^10 + 37294080*x^11 + ...
A(x)^3 = x^3 + 6*x^4 + 42*x^5 + 308*x^6 + 2358*x^7 + 18612*x^8 + 150424*x^9 + 1238688*x^10 + 10355982*x^11 + 87672468*x^12 + ...
The series reversion R(x) of A(x), R(A(x)) = x, begins:
R(x) = x - 2*x^2 - 2*x^3 - 2*x^5 - 2*x^9 - 2*x^17 - 2*x^33 - 2*x^65 - 2*x^129 - 2*x^257 - 2*x^513 + ... + -2*x^(2^n+1) + ...
SPECIFIC VALUES.
A(1/10) = 0.1580645870348513671680526916072548213169829162556439...
A(1/11) = 0.1278454819475039498675733418966788971517121949516108...
A(1/12) = 0.1104694875320629136831876267359845627848091250498995...
-
{a(n) = my(A=serreverse(x - 2*x*sum(m=0,#binary(n),x^(2^m) +x*O(x^n)))); polcoeff(A,n)}
for(n=1, 30, print1(a(n), ", "))
-
{a(n) = my(A=[0,1]); for(i=1, n, A = concat(A,0); F=Ser(A); A[#A] = polcoeff( subst(F,x, x*F + 2*F^3) - F^2, #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments