cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A357151 Coefficients in the power series A(x) such that: A(x) = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 3, 13, 60, 299, 1586, 8697, 49117, 283437, 1664128, 9908903, 59694494, 363179981, 2228272706, 13771458148, 85655772108, 535759514193, 3367801361510, 21264574306632, 134804893426581, 857682458939905, 5474890014327326, 35053167752718368, 225046818744827456
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 60*x^4 + 299*x^5 + 1586*x^6 + 8697*x^7 + 49117*x^8 + 283437*x^9 + 1664128*x^10 + 9908903*x^11 + 59694494*x^12 + ...
such that
A(x) = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^4 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(Ser(A) - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x) = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -A(x)^4 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.

A357152 Coefficients in the power series A(x) such that: A(x)^2 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 4, 23, 147, 1022, 7529, 57605, 453691, 3653149, 29937140, 248865368, 2093488837, 17787701638, 152433293056, 1315973808843, 11434434212115, 99918928175263, 877543565096334, 7741838176253076, 68576621373325887, 609670801860847612, 5438211584097291663
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 147*x^4 + 1022*x^5 + 7529*x^6 + 57605*x^7 + 453691*x^8 + 3653149*x^9 + 29937140*x^10 + 248865368*x^11 + 2093488837*x^12 + ...
such that
A(x)^2 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^5 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(Ser(A)^2 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x)^2 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -A(x)^5 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.

A357153 Coefficients in the power series A(x) such that: A(x)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 5, 36, 294, 2619, 24707, 242371, 2447978, 25284765, 265843662, 2835731692, 30612741292, 333824638817, 3671758248394, 40687442415206, 453801298156927, 5090406853194269, 57390539385386185, 649970717964393458, 7391173949517432182, 84358450717964077883
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 36*x^3 + 294*x^4 + 2619*x^5 + 24707*x^6 + 242371*x^7 + 2447978*x^8 + 25284765*x^9 + 265843662*x^10 + 2835731692*x^11 + 30612741292*x^12 + ...
such that
A(x)^3 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^6 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(Ser(A)^3 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -A(x)^6 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.

A357154 Coefficients in the power series A(x) such that: A(x)^4 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 6, 52, 517, 5615, 64587, 772961, 9526304, 120084968, 1541062520, 20066028177, 264441631790, 3520463590183, 47274535397701, 639587090815124, 8709694025888081, 119288137354977880, 1642104576551818747, 22707897424654348214, 315300786621008803900
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 52*x^3 + 517*x^4 + 5615*x^5 + 64587*x^6 + 772961*x^7 + 9526304*x^8 + 120084968*x^9 + 1541062520*x^10 + 20066028177*x^11 + 264441631790*x^12 + ...
such that
A(x)^4 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^7 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(Ser(A)^4 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x)^4 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -A(x)^7 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.

A357155 Coefficients in the power series A(x) such that: A(x)^5 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 7, 71, 832, 10660, 144684, 2043814, 29736131, 442562703, 6706068107, 103109044005, 1604621459651, 25226987525340, 400062373648799, 6392118111706099, 102801779216363982, 1662854341556813731, 27034758217304814579, 441537893821034707720, 7240848432876171585800
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 71*x^3 + 832*x^4 + 10660*x^5 + 144684*x^6 + 2043814*x^7 + 29736131*x^8 + 442562703*x^9 + 6706068107*x^10 + 103109044005*x^11 + 1604621459651*x^12 + ...
such that
A(x)^5 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^8 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(Ser(A)^5 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x)^5 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -x*A(x)^7 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -A(x)^8 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.

A357160 Coefficients in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 2, 8, 24, 88, 313, 1187, 4549, 17898, 71324, 288365, 1177729, 4856051, 20178061, 84427850, 355375253, 1503849591, 6394015744, 27301536104, 117020066991, 503313598572, 2171633107742, 9396938664272, 40769489510945, 177313714453588, 772906669281227, 3376119803594888
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2022

Keywords

Comments

Compare to A356783.
Related identity: 0 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1).
Related identity: 0 = Sum_{n=-oo..+oo} x^(k*n) * (y - x^(n+1-k))^n, which holds for any positive integer k and real y.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 24*x^4 + 88*x^5 + 313*x^6 + 1187*x^7 + 4549*x^8 + 17898*x^9 + 71324*x^10 + ...
such that
1 = ... + x^(-4)*(1 - 1/x^3)^(-1)/A(x)^2 + x^(-1)/A(x) + x^2*(1 - 1/x) + x^5*0*A(x) + x^8*(1 - x)^3*A(x)^2 + x^11*(1 - x^2)^4*A(x)^3 + ... + x^(3*n+2)*(1 - x^(n-1))^(n+1)*A(x)^n + ...
also
-A(x)^3 = ... + x^(-4)*(A(x) - 1/x^3)^(-1)*A(x)^2 + x^(-1)*A(x) + x^2*(A(x) - 1/x) + x^5*(A(x) - 1)^2/A(x) + x^8*(A(x) - x)^3/A(x)^2 + x^11*(A(x) - x^2)^4/A(x)^3 + ... + x^(3*n+2)*(A(x) - x^(n-1))^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0,n, A = concat(A,0);
    A[#A] = polcoeff(1 - sum(n=-#A\3-2,#A\3+2, x^(3*n+2) * (1 - x^(n-1) +x*O(x^#A))^(n+1) * Ser(A)^n  ),#A-2); );A[n+1]}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) 1 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.
(2) x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+2))^n * A(x)^n ).
(3) -x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+2)*A(x))^n.
(4) -A(x)^3 = Sum_{n=-oo..+oo} x^(3*n+2) * (A(x) - x^(n-1))^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1)*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+2))^n.

A357200 Coefficients in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 0, 0, -7, -3, -17, 52, 51, 384, -227, -52, -6311, -2722, -18733, 79229, 67453, 620385, -619315, 85796, -13137380, -595833, -43282243, 205480697, 66895157, 1551910768, -2300631561, 1546386060, -36481481081, 15982958026, -135266506195, 652843485153
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2022

Keywords

Comments

Compare to A356783 and A357160.
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1).
Related identity: 0 = Sum_{n=-oo..+oo} x^(k*n) * (y - x^(n+1-k))^n, which holds for any positive integer k and real y.

Examples

			G.f.: A(x) = 1 + x - 7*x^4 - 3*x^5 - 17*x^6 + 52*x^7 + 51*x^8 + 384*x^9 - 227*x^10 - 52*x^11 - 6311*x^12 - 2722*x^13 - 18733*x^14 + ...
such that
1 = ... + x^(-2)*(1 - 1/x)^(-1)/A(x)^2 + x^(-1)/A(x) + (1 - x) + x*(1 - x^2)*A(x) + x^2*(1 - x^3)^3*A(x)^2 + x^3*(1 - x^4)^4*A(x)^3 + ... + x^n*(1 - x^(n+1))^(n+1)*A(x)^n + ...
also
-A(x)^3 = ... + x^(-2)*(A(x) - 1/x)^(-1)*A(x)^2 + x^(-1)*A(x) + (A(x) - x) + x*(A(x) - x^2)^2/A(x) + x^2*(A(x) - x^3)^3/A(x)^2 + x^3*(A(x) - x^4)^4/A(x)^3 + ... + x^n*(A(x) - x^(n+1))^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(1 - sum(n=-#A-2, #A+2, x^n * (1 - x^(n+1) +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) 1 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
(2) x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^n)^n * A(x)^n ).
(3) -x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^n*A(x))^n.
(4) -A(x)^3 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(n+1))^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1)*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^n)^n.

A357400 Coefficients T(n,k) of x^n*y^k in the function A(x,y) that satisfies: y = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x,y)^n, as a triangle read by rows with k = 0..n for each row index n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 1, 0, 5, 0, 0, 3, 0, 14, 0, -2, 0, 10, 0, 42, 0, 8, -12, 0, 35, 0, 132, 0, -14, 36, -52, 0, 126, 0, 429, 0, 16, -76, 148, -210, 0, 462, 0, 1430, 0, -7, 84, -354, 590, -825, 0, 1716, 0, 4862, 0, -24, -27, 416, -1565, 2322, -3199, 0, 6435, 0, 16796, 0, 103, -276, -120, 1950, -6732, 9086, -12320, 0, 24310, 0, 58786, 0, -232, 987, -1752, -560, 8832, -28490, 35464, -47268, 0, 92378, 0, 208012
Offset: 0

Views

Author

Paul D. Hanna, Sep 26 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).
T(n,n) = binomial(2*n+1, n+1)/(2*n+1) = A000108(n) for n >= 0.
T(n+1,n) = 0 for n>= 0.
T(n+2,n) = binomial(2*n-1, n-1) = A001700(n-1) for n >= 1.
T(n+3,n) = 0 for n>= 0.
T(n+1,1) = A357401(n) for n >= 0.
A356783(n) = Sum_{k=0..n} T(n,k), for n >= 0.
A357402(n) = Sum_{k=0..n} T(n,k) * 2^k, for n >= 0.
A357403(n) = Sum_{k=0..n} T(n,k) * 3^k, for n >= 0.
A357404(n) = Sum_{k=0..n} T(n,k) * 4^k, for n >= 0.
A357405(n) = Sum_{k=0..n} T(n,k) * 5^k, for n >= 0.

Examples

			G.f. A(x,y) = 1 + x*y + x^2*(2*y^2) + x^3*(y + 5*y^3) + x^4*(3*y^2 + 14*y^4) + x^5*(-2*y + 10*y^3 + 42*y^5) + x^6*(8*y - 12*y^2 + 35*y^4 + 132*y^6) + x^7*(-14*y + 36*y^2 - 52*y^3 + 126*y^5 + 429*y^7) + x^8*(16*y - 76*y^2 + 148*y^3 - 210*y^4 + 462*y^6 + 1430*y^8) + x^9*(-7*y + 84*y^2 - 354*y^3 + 590*y^4 - 825*y^5 + 1716*y^7 + 4862*y^9) + x^10*(-24*y - 27*y^2 + 416*y^3 - 1565*y^4 + 2322*y^5 - 3199*y^6 + 6435*y^8 + 16796*y^10) + ...
such that
y = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x,y)^2 + x^(-1)/A(x,y) + x*0 + x^3*(1 - x)^2*A(x,y) + x^5*(1 - x^2)^3*A(x,y)^2 + x^7*(1 - x^3)^4*A(x,y)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x,y)^n + ...
also
-y*A(x,y)^3 = ... + x^(-3)*(A(x,y) - x^(-2))^(-1)*A(x,y)^2 + x^(-1)*A(x,y) + x*(A(x,y) - 1) + x^3*(A(x,y) - x)^2/A(x,y) + x^5*(1 - x^2)^3/A(x,y)^2 + x^7*(A(x,y) - x^3)^4/A(x,y)^3 + ... + x^(2*n+1)*(A(x,y) - x^n)^(n+1)/A(x,y)^n + ...
This triangle of coefficients T(n,k) of x^n*y^k, k = 0..n, in g.f. A(x,y) begins:
n = 0: [1],
n = 1: [0, 1],
n = 2: [0, 0, 2],
n = 3: [0, 1, 0, 5],
n = 4: [0, 0, 3, 0, 14],
n = 5: [0, -2, 0, 10, 0, 42],
n = 6: [0, 8, -12, 0, 35, 0, 132],
n = 7: [0, -14, 36, -52, 0, 126, 0, 429],
n = 8: [0, 16, -76, 148, -210, 0, 462, 0, 1430],
n = 9: [0, -7, 84, -354, 590, -825, 0, 1716, 0, 4862],
n = 10: [0, -24, -27, 416, -1565, 2322, -3199, 0, 6435, 0, 16796],
n = 11: [0, 103, -276, -120, 1950, -6732, 9086, -12320, 0, 24310, 0, 58786],
n = 12: [0, -232, 987, -1752, -560, 8832, -28490, 35464, -47268, 0, 92378, 0, 208012],
n = 13: [0, 334, -2160, 6436, -9460, -2673, 39102, -119296, 138294, -180960, 0, 352716, 0, 742900],
n = 14: [0, -256, 3002, -14484, 36218, -46902, -12929, 170368, -495846, 539240, -691900, 0, 1352078, 0, 2674440], ...
in which the main diagonal equals the Catalan numbers (A000108).
		

Crossrefs

Cf. A356783 (row sums), A357402 (y=2), A357403 (y=3), A357404 (y=4), A357405 (y=5).
Cf. A357401 (column 1), A357151, A000108, A001700.

Programs

  • PARI
    {T(n,k) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(y - sum(m=-#A\2-1, #A\2+1, x^(2*m+1) * (1 - x^m +x*O(x^#A))^(m+1) * Ser(A)^m  ), #A-2); ); polcoeff(A[n+1],k,y)}
    for(n=0, 15, for(k=0,n, print1(T(n,k), ", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n*y^k satisfies the following relations.
(1) y = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x,y)^n.
(2) y*x*A(x,y) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x,y)^n ).
(3) -y*x*A(x,y)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x,y)^n / (1 - x^(n+1)*A(x,y))^n.
(4) -y*A(x,y)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x,y) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x,y))^(n+1) / A(x,y)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x,y)^n / (A(x,y) - x^(n+1))^n.

A357402 Coefficients in the power series A(x) such that: 2 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 2, 8, 42, 236, 1420, 8976, 58644, 393200, 2689522, 18694164, 131658910, 937490780, 6737990172, 48816739048, 356142597586, 2614103310384, 19291118713324, 143044431901580, 1065237986700788, 7963426677825000, 59741019702076168, 449601401992383464, 3393484429948103486
Offset: 0

Views

Author

Paul D. Hanna, Sep 26 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).
a(n) = Sum_{k=0..n} A357400(n,k) * 2^k, for n >= 0.

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 42*x^3 + 236*x^4 + 1420*x^5 + 8976*x^6 + 58644*x^7 + 393200*x^8 + 2689522*x^9 + 18694164*x^10 + ...
such that
2 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-2*A(x)^3 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(2 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) 2 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) 2*x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -2*x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -2*A(x)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.

A357403 Coefficients in the power series A(x) such that: 3 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 3, 18, 138, 1161, 10470, 98979, 967719, 9705378, 99290130, 1032123366, 10870453785, 115749660723, 1244016993747, 13477172250201, 147021521096445, 1613619363015645, 17805435511256394, 197414608524234453, 2198189145649419426, 24571174933256703567, 275615684936993421462
Offset: 0

Views

Author

Paul D. Hanna, Sep 26 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).
a(n) = Sum_{k=0..n} A357400(n,k) * 3^k, for n >= 0.

Examples

			G.f.: A(x) = 1 + 3*x + 18*x^2 + 138*x^3 + 1161*x^4 + 10470*x^5 + 98979*x^6 + 967719*x^7 + 9705378*x^8 + 99290130*x^9 + 1032123366*x^10 + ...
such that
3 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-3*A(x)^3 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(3 - sum(m=-#A\2-1, #A\2+1, x^(2*m+1) * (1 - x^m +x*O(x^#A))^(m+1) * Ser(A)^m  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) 3 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) 3*x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -3*x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -3*A(x)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.
Showing 1-10 of 15 results. Next