cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A356783 Coefficients in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 2, 6, 17, 50, 163, 525, 1770, 6066, 21154, 74787, 267371, 965233, 3513029, 12877687, 47499333, 176167086, 656568385, 2457710598, 9236079055, 34832753818, 131792634266, 500121476517, 1902979982421, 7258942377746, 27752992782498, 106333425162358, 408213503595652
Offset: 0

Views

Author

Paul D. Hanna, Sep 15 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 17*x^4 + 50*x^5 + 163*x^6 + 525*x^7 + 1770*x^8 + 6066*x^9 + 21154*x^10 + 74787*x^11 + 267371*x^12 + ...
such that
1 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^3 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0,n, A = concat(A,0);
    A[#A] = polcoeff(1 - sum(n=-#A\2-1,#A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n  ),#A-2); );A[n+1]}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) 1 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -A(x)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.
a(n) ~ c * d^n / n^(3/2), where d = 4.04962821886295599791727073173857... and c = 0.613483546803830745310382482744... - Vaclav Kotesovec, Mar 22 2025

A357151 Coefficients in the power series A(x) such that: A(x) = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 3, 13, 60, 299, 1586, 8697, 49117, 283437, 1664128, 9908903, 59694494, 363179981, 2228272706, 13771458148, 85655772108, 535759514193, 3367801361510, 21264574306632, 134804893426581, 857682458939905, 5474890014327326, 35053167752718368, 225046818744827456
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 60*x^4 + 299*x^5 + 1586*x^6 + 8697*x^7 + 49117*x^8 + 283437*x^9 + 1664128*x^10 + 9908903*x^11 + 59694494*x^12 + ...
such that
A(x) = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^4 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(Ser(A) - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x) = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -A(x)^4 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.

A357152 Coefficients in the power series A(x) such that: A(x)^2 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 4, 23, 147, 1022, 7529, 57605, 453691, 3653149, 29937140, 248865368, 2093488837, 17787701638, 152433293056, 1315973808843, 11434434212115, 99918928175263, 877543565096334, 7741838176253076, 68576621373325887, 609670801860847612, 5438211584097291663
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 147*x^4 + 1022*x^5 + 7529*x^6 + 57605*x^7 + 453691*x^8 + 3653149*x^9 + 29937140*x^10 + 248865368*x^11 + 2093488837*x^12 + ...
such that
A(x)^2 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^5 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(Ser(A)^2 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x)^2 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -A(x)^5 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.

A357153 Coefficients in the power series A(x) such that: A(x)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 5, 36, 294, 2619, 24707, 242371, 2447978, 25284765, 265843662, 2835731692, 30612741292, 333824638817, 3671758248394, 40687442415206, 453801298156927, 5090406853194269, 57390539385386185, 649970717964393458, 7391173949517432182, 84358450717964077883
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 36*x^3 + 294*x^4 + 2619*x^5 + 24707*x^6 + 242371*x^7 + 2447978*x^8 + 25284765*x^9 + 265843662*x^10 + 2835731692*x^11 + 30612741292*x^12 + ...
such that
A(x)^3 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^6 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(Ser(A)^3 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -A(x)^6 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.

A357154 Coefficients in the power series A(x) such that: A(x)^4 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 6, 52, 517, 5615, 64587, 772961, 9526304, 120084968, 1541062520, 20066028177, 264441631790, 3520463590183, 47274535397701, 639587090815124, 8709694025888081, 119288137354977880, 1642104576551818747, 22707897424654348214, 315300786621008803900
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2022

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1).

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 52*x^3 + 517*x^4 + 5615*x^5 + 64587*x^6 + 772961*x^7 + 9526304*x^8 + 120084968*x^9 + 1541062520*x^10 + 20066028177*x^11 + 264441631790*x^12 + ...
such that
A(x)^4 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^7 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(Ser(A)^4 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x)^4 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
(2) x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ).
(3) -x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n.
(4) -A(x)^7 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n.

A357165 Coefficients in the power series A(x) such that: A(x)^5 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 7, 73, 859, 11083, 151369, 2151961, 31510682, 471993401, 7198166363, 111390268227, 1744706996712, 27606853938808, 440638645554932, 7086053148425023, 114700710907449375, 1867353232898846998, 30556409451787334011, 502291724376632138667, 8290605658533141188978
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2022

Keywords

Comments

Compare to A357155.
Related identity: 0 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1).
Related identity: 0 = Sum_{n=-oo..+oo} x^(k*n) * (y - x^(n+1-k))^n, which holds for any positive integer k and real y.

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 73*x^3 + 859*x^4 + 11083*x^5 + 151369*x^6 + 2151961*x^7 + 31510682*x^8 + 471993401*x^9 + 7198166363*x^10 + ...
such that
A(x)^5 = ... + x^(-4)*(1 - 1/x^3)^(-1)/A(x)^2 + x^(-1)/A(x) + x^2*(1 - 1/x) + x^5*0*A(x) + x^8*(1 - x)^3*A(x)^2 + x^11*(1 - x^2)^4*A(x)^3 + ... + x^(3*n+2)*(1 - x^(n-1))^(n+1)*A(x)^n + ...
also
-A(x)^8 = ... + x^(-4)*(A(x) - 1/x^3)^(-1)*A(x)^2 + x^(-1)*A(x) + x^2*(A(x) - 1/x) + x^5*(A(x) - 1)^2/A(x) + x^8*(A(x) - x)^3/A(x)^2 + x^11*(A(x) - x^2)^4/A(x)^3 + ... + x^(3*n+2)*(A(x) - x^(n-1))^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0,n, A = concat(A,0);
    A[#A] = polcoeff(Ser(A)^5 - sum(n=-#A\3-2,#A\3+2, x^(3*n+2) * (1 - x^(n-1) +x*O(x^#A))^(n+1) * Ser(A)^n  ),#A-2); );A[n+1]}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x)^5 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.
(2) x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+2))^n * A(x)^n ).
(3) -x*A(x)^7 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+2)*A(x))^n.
(4) -A(x)^8 = Sum_{n=-oo..+oo} x^(3*n+2) * (A(x) - x^(n-1))^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1)*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+2))^n.

A357205 Coefficients in the power series A(x) such that: A(x)^5 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 5, 45, 453, 5072, 59964, 738449, 9365617, 121511799, 1605113475, 21514501261, 291880434822, 4000334186684, 55304105835751, 770323876417969, 10800108248187952, 152293211204657100, 2158477865404685913, 30732066480408276249, 439351185869943970405
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2022

Keywords

Comments

Compare to A357155 and A357165.
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1).
Related identity: 0 = Sum_{n=-oo..+oo} x^(k*n) * (y - x^(n+1-k))^n, which holds for any positive integer k and real y.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 45*x^3 + 453*x^4 + 5072*x^5 + 59964*x^6 + 738449*x^7 + 9365617*x^8 + 121511799*x^9 + 1605113475*x^10 + ...
such that
A(x)^5 = ... + x^(-2)*(1 - 1/x)^(-1)/A(x)^2 + x^(-1)/A(x) + (1 - x) + x*(1 - x^2)*A(x) + x^2*(1 - x^3)^3*A(x)^2 + x^3*(1 - x^4)^4*A(x)^3 + ... + x^n*(1 - x^(n+1))^(n+1)*A(x)^n + ...
also
-A(x)^8 = ... + x^(-2)*(A(x) - 1/x)^(-1)*A(x)^2 + x^(-1)*A(x) + (A(x) - x) + x*(A(x) - x^2)^2/A(x) + x^2*(A(x) - x^3)^3/A(x)^2 + x^3*(A(x) - x^4)^4/A(x)^3 + ... + x^n*(A(x) - x^(n+1))^(n+1)/A(x)^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(Ser(A)^5 - sum(n=-#A-2, #A+2, x^(n) * (1 - x^(n+1) +x*O(x^#A))^(n+1) * Ser(A)^n  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) A(x)^5 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
(2) x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^n)^n * A(x)^n ).
(3) -x*A(x)^7 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^n*A(x))^n.
(4) -A(x)^8 = Sum_{n=-oo..+oo} x^n * (A(x) - x^(n+1))^(n+1) / A(x)^n.
(5) 0 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1)*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^n)^n.
Showing 1-7 of 7 results.