A356783
Coefficients in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 2, 6, 17, 50, 163, 525, 1770, 6066, 21154, 74787, 267371, 965233, 3513029, 12877687, 47499333, 176167086, 656568385, 2457710598, 9236079055, 34832753818, 131792634266, 500121476517, 1902979982421, 7258942377746, 27752992782498, 106333425162358, 408213503595652
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 17*x^4 + 50*x^5 + 163*x^6 + 525*x^7 + 1770*x^8 + 6066*x^9 + 21154*x^10 + 74787*x^11 + 267371*x^12 + ...
such that
1 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^3 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0,n, A = concat(A,0);
A[#A] = polcoeff(1 - sum(n=-#A\2-1,#A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n ),#A-2); );A[n+1]}
for(n=0,30, print1(a(n),", "))
A357151
Coefficients in the power series A(x) such that: A(x) = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 3, 13, 60, 299, 1586, 8697, 49117, 283437, 1664128, 9908903, 59694494, 363179981, 2228272706, 13771458148, 85655772108, 535759514193, 3367801361510, 21264574306632, 134804893426581, 857682458939905, 5474890014327326, 35053167752718368, 225046818744827456
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 60*x^4 + 299*x^5 + 1586*x^6 + 8697*x^7 + 49117*x^8 + 283437*x^9 + 1664128*x^10 + 9908903*x^11 + 59694494*x^12 + ...
such that
A(x) = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^4 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(Ser(A) - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357153
Coefficients in the power series A(x) such that: A(x)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 5, 36, 294, 2619, 24707, 242371, 2447978, 25284765, 265843662, 2835731692, 30612741292, 333824638817, 3671758248394, 40687442415206, 453801298156927, 5090406853194269, 57390539385386185, 649970717964393458, 7391173949517432182, 84358450717964077883
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 36*x^3 + 294*x^4 + 2619*x^5 + 24707*x^6 + 242371*x^7 + 2447978*x^8 + 25284765*x^9 + 265843662*x^10 + 2835731692*x^11 + 30612741292*x^12 + ...
such that
A(x)^3 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^6 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(Ser(A)^3 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357154
Coefficients in the power series A(x) such that: A(x)^4 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 6, 52, 517, 5615, 64587, 772961, 9526304, 120084968, 1541062520, 20066028177, 264441631790, 3520463590183, 47274535397701, 639587090815124, 8709694025888081, 119288137354977880, 1642104576551818747, 22707897424654348214, 315300786621008803900
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 52*x^3 + 517*x^4 + 5615*x^5 + 64587*x^6 + 772961*x^7 + 9526304*x^8 + 120084968*x^9 + 1541062520*x^10 + 20066028177*x^11 + 264441631790*x^12 + ...
such that
A(x)^4 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^7 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(Ser(A)^4 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357155
Coefficients in the power series A(x) such that: A(x)^5 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 7, 71, 832, 10660, 144684, 2043814, 29736131, 442562703, 6706068107, 103109044005, 1604621459651, 25226987525340, 400062373648799, 6392118111706099, 102801779216363982, 1662854341556813731, 27034758217304814579, 441537893821034707720, 7240848432876171585800
Offset: 0
G.f.: A(x) = 1 + x + 7*x^2 + 71*x^3 + 832*x^4 + 10660*x^5 + 144684*x^6 + 2043814*x^7 + 29736131*x^8 + 442562703*x^9 + 6706068107*x^10 + 103109044005*x^11 + 1604621459651*x^12 + ...
such that
A(x)^5 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ...
also
-A(x)^8 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(Ser(A)^5 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A357162
Coefficients in the power series A(x) such that: A(x)^2 = Sum_{n=-oo..+oo} x^(3*n+2) * (1 - x^(n-1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 4, 25, 162, 1160, 8731, 68364, 550707, 4535402, 38012170, 323168946, 2780229079, 24158457026, 211721412339, 1869239684558, 16609750957942, 148431230687412, 1333134683364035, 12027524448579488, 108951760865234373, 990555733683233240, 9035754580314840475
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 162*x^4 + 1160*x^5 + 8731*x^6 + 68364*x^7 + 550707*x^8 + 4535402*x^9 + 38012170*x^10 + ...
such that
A(x)^2 = ... + x^(-4)*(1 - 1/x^3)^(-1)/A(x)^2 + x^(-1)/A(x) + x^2*(1 - 1/x) + x^5*0*A(x) + x^8*(1 - x)^3*A(x)^2 + x^11*(1 - x^2)^4*A(x)^3 + ... + x^(3*n+2)*(1 - x^(n-1))^(n+1)*A(x)^n + ...
also
-A(x)^5 = ... + x^(-4)*(A(x) - 1/x^3)^(-1)*A(x)^2 + x^(-1)*A(x) + x^2*(A(x) - 1/x) + x^5*(A(x) - 1)^2/A(x) + x^8*(A(x) - x)^3/A(x)^2 + x^11*(A(x) - x^2)^4/A(x)^3 + ... + x^(3*n+2)*(A(x) - x^(n-1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0,n, A = concat(A,0);
A[#A] = polcoeff(Ser(A)^2 - sum(n=-#A\3-2,#A\3+2, x^(3*n+2) * (1 - x^(n-1) +x*O(x^#A))^(n+1) * Ser(A)^n ),#A-2); );A[n+1]}
for(n=0,30, print1(a(n),", "))
A357202
Coefficients in the power series A(x) such that: A(x)^2 = Sum_{n=-oo..+oo} x^n * (1 - x^(n+1))^(n+1) * A(x)^n.
Original entry on oeis.org
1, 1, 2, 9, 35, 182, 921, 5062, 28234, 162330, 947773, 5622641, 33747694, 204676547, 1252083028, 7717376754, 47878314072, 298749048454, 1873637869199, 11804288518884, 74673607921030, 474128308291896, 3020493580980524, 19301224674496592, 123681469340775568
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 35*x^4 + 182*x^5 + 921*x^6 + 5062*x^7 + 28234*x^8 + 162330*x^9 + 947773*x^10 + 5622641*x^11 + 33747694*x^12 + ...
such that
A(x)^2 = ... + x^(-2)*(1 - 1/x)^(-1)/A(x)^2 + x^(-1)/A(x) + (1 - x) + x*(1 - x^2)*A(x) + x^2*(1 - x^3)^3*A(x)^2 + x^3*(1 - x^4)^4*A(x)^3 + ... + x^n*(1 - x^(n+1))^(n+1)*A(x)^n + ...
also
-A(x)^5 = ... + x^(-2)*(A(x) - 1/x)^(-1)*A(x)^2 + x^(-1)*A(x) + (A(x) - x) + x*(A(x) - x^2)^2/A(x) + x^2*(A(x) - x^3)^3/A(x)^2 + x^3*(A(x) - x^4)^4/A(x)^3 + ... + x^n*(A(x) - x^(n+1))^(n+1)/A(x)^n + ...
-
{a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff(Ser(A)^2 - sum(n=-#A-2, #A+2, x^(n) * (1 - x^(n+1) +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-7 of 7 results.
Comments