cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A048656 a(n) is the number of unitary (and also of squarefree) divisors of n!.

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 16, 16, 16, 16, 32, 32, 64, 64, 64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 4096, 4096, 4096, 4096, 8192, 8192, 16384, 16384, 16384, 16384, 32768, 32768, 32768, 32768
Offset: 1

Views

Author

Keywords

Comments

Let K(n) be the field that is generated over the rationals Q by adjoining the square roots of the numbers 1,2,3,...,n, i.e., K(n) = Q(sqrt(1),sqrt(2),...,sqrt(n)); a(n) is the degree of this field over Q. - Avi Peretz (njk(AT)netvision.net.il), Mar 20 2001
For n>1, a(n) is the number of ways n! can be expressed as the product of two coprime integers p and q such that 0 < p/q < 1, if negative integers are considered as well. This is the answer to the 2nd problem of the International Mathematical Olympiad 2001. Example, for n = 3, the a(3) = 4 products are 3! = (-2)*(-3) = (-1)*(-6) = 1*6 = 2*3. - Bernard Schott, Jan 21 2021
a(n) = number of subsets S of {1,2,...,n} such that every number in S is a prime. - Clark Kimberling, Sep 17 2022

Examples

			For n = 7, n! = 5040 = 16*9*5*7 with 4 distinct prime factors, so a(7) = A034444(7!) = 16.
The subsets S of {1, 2, 3, 4} such that every number in S is a prime are these: {}, {2}, {3}, {2, 3}; thus, a(4) = 4. - _Clark Kimberling_, Sep 17 2022
		

Crossrefs

Programs

Formula

A001221(n!) = A000720(n) so a(n) = A034444(n!) = 2^A000720(n).
Sum_{n>=1} 1/a(n) = A098882 + 1 = A098990 - 1. - Amiram Eldar, Mar 13 2025

A357214 a(n) = number of subsets S of {1, 2, ..., n} such that every number in S is a composite.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 8, 16, 32, 32, 64, 64, 128, 256, 512, 512, 1024, 1024, 2048, 4096, 8192, 8192, 16384, 32768, 65536, 131072, 262144, 262144, 524288, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 16777216, 33554432, 67108864, 134217728, 134217728
Offset: 1

Views

Author

Clark Kimberling, Sep 24 2022

Keywords

Examples

			The subsets S of {1,2,3,4,5,6} such that every number in S is a composite are {}, {4}, {6}, and {4,6}, so a(6) = 4.
		

Crossrefs

Programs

  • Mathematica
    (1/2) Table[2^(n - PrimePi[n]), {n, 50}]
  • PARI
    a(n) = 1 << (n-primepi(n)-1); \\ Kevin Ryde, Sep 24 2022
  • Python
    from sympy import primepi
    def a(n): return 2**(n-primepi(n)-1)
    print([a(n) for n in range(1, 42)]) # Michael S. Branicky, Sep 24 2022
    

Formula

a(n) = (1/2)*(2^(n - A000720(n))).
a(n) = 2^A065855(n).

A371907 a(n) = sum of 2^(k-1) such that floor(n/prime(k)) is even.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 1, 4, 4, 7, 7, 14, 8, 9, 9, 10, 10, 15, 5, 20, 20, 23, 19, 50, 48, 57, 57, 62, 62, 63, 45, 108, 96, 99, 99, 226, 192, 197, 197, 206, 206, 223, 217, 472, 472, 475, 467, 470, 404, 437, 437, 438, 418, 427, 297, 808, 808, 815, 815, 1838, 1828
Offset: 1

Views

Author

Michael De Vlieger, Apr 17 2024

Keywords

Comments

This is a transform of A372007(n) = s(n). Write the prime indices of k factors prime(k) | s(n) instead as 2^(k-1) and take the sum for all primes p | s(n). Hence, s(14) = 105 = 3*5*7 becomes a(14) = 2^1 + 2^2 + 2^3 = 2 + 4 + 8 = 14.

Examples

			a(1) = 0 since n = 1 is the empty product.
a(2) = 0 since for n = prime(1) = 2, floor(2/2) = 1 is odd. Therefore a(2) = 0.
a(3) = 0 since for n = 3 and prime(1) = 2, floor(3/2) = 1 is odd, and for prime(2) = 3, floor(3/3) = 1 is odd. Hence a(3) = 0.
a(4) = 1 since for n = 4 and prime(1) = 2, floor(4/2) = 2 is even, but for prime(2) = 3, floor(4/3) = 1 is odd. Therefore, a(4) = 2^(1-1) = 1.
a(8) = 1 since for n = 8, both floor(8/2) and floor(8/3) are even, but both floor(8/5) and floor(8/7) are odd. Therefore, a(8) = 2^(1-1) + 2^(2-1) = 1 + 2 = 3, etc.
Table relating a(n) with b(n), s(n), and t(n), diagramming powers of 2 with "x" that sum to a(n) or b(n), or prime factors with "x" that produce s(n) or t(n). Sequences s(n) = A372007(n), t(n) = A372000(n), c(n) = A034386(n), b(n) = A371906(n), and c(n) = A357215(n) = a(n) + b(n). Column A (at top) shows powers of 2 that sum to a(n), with B same for b(n), while column S represents prime factors of s(n), T same of t(n).
      [A] 2^k     [B] 2^k
   n   0123  a(n)  012345  b(n)   c(n)   s(n)   t(n)  v(n)
  --------------------------------------------------------
   1   .       0   .         0   2^0-1     1      1   P(0)
   2   .       0   x         1   2^1-1     1      2   P(1)
   3   .       0   xx        3   2^2-1     1      6   P(2)
   4   x       1   .x        2   2^2-1     2      3   P(2)
   5   x       1   .xx       6   2^3-1     2     15   P(3)
   6   .x      2   x.x       5   2^3-1     3     10   P(3)
   7   .x      2   x.xx     13   2^4-1     3     70   P(4)
   8   xx      3   ..xx     12   2^4-1     6     35   P(4)
   9   x       1   .xxx     14   2^4-1     2    105   P(4)
  10   ..x     4   xx.x     11   2^4-1     5     42   P(4)
  11   ..x     4   xx.xx    27   2^5-1     5    462   P(5)
  12   xxx     7   ...xx    24   2^5-1    30     77   P(5)
  13   xxx     7   ...xxx   56   2^6-1    30   1001   P(6)
  14   .xxx   14   x...xx   49   2^6-1   105    286   P(6)
  15   ...x    8   xxx.xx   55   2^6-1     7   4290   P(6)
  16   x..x    9   .xx.xx   54   2^6-1    14   2145   P(6)
  --------------------------------------------------------
       2357        [T] 11
       [S]         235713
		

Crossrefs

Programs

  • Mathematica
    Table[Total[2^(-1 + Select[Range@ PrimePi[n], EvenQ@ Quotient[n, Prime[#]] &])], {n, 50}]
  • PARI
    a(n) = my(vp=primes([1, n])); vecsum(apply(x->2^(x-1), Vec(select(x->(((n\x) % 2)==0), vp, 1)))); \\ Michel Marcus, Apr 30 2024

Formula

a(n) = A357215(n) - A371906(n).

A372007 a(n) = product of those prime(k) such that floor(n/prime(k)) is even.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 6, 2, 5, 5, 30, 30, 105, 7, 14, 14, 21, 21, 210, 10, 55, 55, 330, 66, 429, 143, 2002, 2002, 15015, 15015, 30030, 910, 7735, 221, 1326, 1326, 12597, 323, 3230, 3230, 33915, 33915, 746130, 49742, 572033, 572033, 3432198, 490314, 1225785, 24035
Offset: 1

Views

Author

Michael De Vlieger, Apr 17 2024

Keywords

Comments

The only primes in the sequence are 2, 3, 5, and 7.

Examples

			a(1) = 1 since n = 1 is the empty product.
a(2) = 1 since for n = 2, floor(n/p) = floor(2/2) = 1 is odd.
a(3) = 1 since for n = 3 and p = 2, floor(3/2) = 1 is odd, and for p = 3, floor(3/3) = 1 is odd.
a(4) = 2 since for n = 4 and p = 2, floor(4/2) = 2 is even, but for p = 3, floor(4/3) = 1 is odd. Therefore, a(4) = 2.
a(5) = 2 since for n = 5, though floor(5/2) = 2 is even, floor(5/3) and floor(5/5) are both odd. Therefore, a(5) = 2.
a(8) = 6 since for n = 8, both floor(8/2) and floor(8/3) are even, but both floor(8/5) and floor(8/7) are odd. Therefore, a(8) = 2*3 = 6, etc.
Table relating a(n) with b(n), s(n), and t(n), diagramming prime factors with "x" that produce a(n) or b(n), or powers of 2 with "x" that sum to s(n) or t(n). Sequences b(n) = A372000(n), c(n) = A034386(n), s(n) = A371907(n), t(n) = A371906(n), and v(n) = A357215(n) = s(n) + t(n). Column A represents prime factors of a(n), B same of b(n), while column S (at bottom) shows powers of 2 that sum to s(n), with T same for t(n). P(n) = A002110(n).
       [A]          [B] 11
   n   2357   a(n)  235713    b(n)  c(n)  s(n) t(n)   v(n)
  --------------------------------------------------------
   1   .        1   .           1   P(0)    0    0   2^0-1
   2   .        1   x           2   P(1)    0    1   2^1-1
   3   .        1   xx          6   P(2)    0    3   2^2-1
   4   x        2   .x          3   P(2)    1    2   2^2-1
   5   x        2   .xx        15   P(3)    1    6   2^3-1
   6   .x       3   x.x        10   P(3)    2    5   2^3-1
   7   .x       3   x.xx       70   P(4)    2   13   2^4-1
   8   xx       6   ..xx       35   P(4)    3   12   2^4-1
   9   x        2   .xxx      105   P(4)    1   14   2^4-1
  10   ..x      5   xx.x       42   P(4)    4   11   2^4-1
  11   ..x      5   xx.xx     462   P(5)    4   27   2^5-1
  12   xxx     30   ...xx      77   P(5)    7   24   2^5-1
  13   xxx     30   ...xxx   1001   P(6)    7   56   2^6-1
  14   .xxx   105   x...xx    286   P(6)   14   49   2^6-1
  15   ...x     7   xxx.xx   4290   P(6)    8   55   2^6-1
  16   x..x    14   .xx.xx   2145   P(6)    9   54   2^6-1
  --------------------------------------------------------
       0123         012345
     [S] 2^k        [T] 2^k
		

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Select[Prime@ Range@ PrimePi[n], EvenQ@ Quotient[n, #] &], {n, 51}] (* or *)
    Table[Product[Prime[i], {j, PrimePi[n]}, {i, 1 + PrimePi[Floor[n/(2  j + 1)]], PrimePi[Floor[n/(2  j)]]}], {n, 51}]
  • PARI
    a(n) = my(vp=primes([1, n])); vecprod(select(x->(((n\x) % 2)==0), vp)); \\ Michel Marcus, Apr 30 2024

Formula

a(n) = A034386(n) / A372000(n).
a(n) = Product_{k = 1..pi(n)} Product_{j = 1+floor(n/(2*k+1))..floor(n/(2*k))} prime(j), where pi(x) = A000720(n).
Showing 1-4 of 4 results.