cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357266 Number of n-node tournaments that have exactly five circular triads.

Original entry on oeis.org

24, 3648, 90384, 1304576, 19958400, 311592960, 5054353920, 85709352960, 1523221539840, 28387834675200, 554575551129600, 11345938174771200, 242796629621145600, 5427273747293798400, 126546947417899008000
Offset: 5

Views

Author

Keywords

Crossrefs

Formula

Kadane proves that a(n) = n!*((1/5)*(n-4)+(14/3)*(n-5)+8*(n-6)I(n>5)+(7/9)*(n-6)*(n-7)I(n>5)+(10/3)*(n-7)*(n-8)I(n>6)+(5/18)*(n-8)*(n-9)*(n-10)I(n>7)+(1/162)*(n-9)*(n-10)*(n-11)*(n-12)I(n>8)+(1/29160)*(n-10)*(n-11)*(n-12)*(n-13)*(n-14)I(n>9)), where I(p) is the indicator function: 1 if p is true and 0 otherwise.
E.g.f.: (5*x^10-180*x^9+2205*x^8-12150*x^7+34155*x^6-51840*x^5+38313*x^4-3942*x^3-11502*x^2+4698*x+243)*x^5/(5*3^5*(1-x)^6).

A357248 Number of n-node tournaments that have exactly four circular triads.

Original entry on oeis.org

280, 6240, 75600, 954240, 12579840, 175392000, 2594592000, 40721049600, 677053977600, 11901451161600, 220690229760000, 4307253350400000, 88289523818496000, 1896762491559936000, 42625344258072576000, 1000193047805952000000, 24463730767033958400000, 622724156293184225280000
Offset: 5

Views

Author

Keywords

Examples

			For n=5, the a(5)=280 solution is 5!*((7/3)*(5-4)+4*(5-5)+(7/6)(5-6)(5-7)[5>5]+(1/18)*(5-7)(5-8)(5-9)[5>6]+(1/1944)[5>7]*(5-8)!/(5-12)!)=5!*(7/3)*(5-4)=280.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^7-27*x^6+216*x^5-702*x^4+972*x^3-405*x^2-243*x+189)*x^5/((3^4)*(1-x)^5), {x,0,22}], x]Table[n!, {n,0,22}] (* Stefano Spezia, Sep 27 2022 *)

Formula

a(n) = n!*((7/3)*(n-4)+4*(n-5)+(7/6)(n-6)(n-7)[n>5]+(1/18)*(n-7)(n-8)(n-9)[n>6]+(1/1944)[n>7]*(n-8)!/(n-12)!) (see Kadane).
E.g.f.: (x^7-27*x^6+216*x^5-702*x^4+972*x^3-405*x^2-243*x+189)*x^5/((3^4)*(1-x)^5).
Showing 1-2 of 2 results.