cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ryan P. A. McShane

Ryan P. A. McShane's wiki page.

Ryan P. A. McShane has authored 3 sequences.

A357257 Number of n-node tournaments that have exactly three circular triads.

Original entry on oeis.org

240, 2880, 33600, 403200, 5093760, 68275200, 972787200, 14724864000, 236396160000, 4016659046400, 72067387392000, 1362306097152000, 27071765360640000, 564357385912320000, 12317692759916544000, 280955128203509760000
Offset: 5

Author

Keywords

Examples

			a(6) = 6!*(2*(6-4) + (1/3)*(6-5)*(6-6) + (1/162)*(6-6)*(6-7)*(6-8)*[6>5]) = 2880.
		

Crossrefs

Programs

  • Mathematica
    Table[n!*(2*(n-4) + (1/3)*(n-5)*(n-6) + (1/162)*(n-6)*(n-7)*(n-8)*Boole[n>5]), {n,5,20}] (* Stefano Spezia, Sep 27 2022 *)

Formula

a(n) = n!*(2*(n-4) + (1/3)*(n-5)*(n-6) + (1/162)*(n-6)*(n-7)*(n-8)*[n>5]) (see Kadane).
E.g.f.: (x^4 - 18*x^3 + 72*x^2 - 108*x + 54)*x^5/((3^3)*(1-x)^4).

A357248 Number of n-node tournaments that have exactly four circular triads.

Original entry on oeis.org

280, 6240, 75600, 954240, 12579840, 175392000, 2594592000, 40721049600, 677053977600, 11901451161600, 220690229760000, 4307253350400000, 88289523818496000, 1896762491559936000, 42625344258072576000, 1000193047805952000000, 24463730767033958400000, 622724156293184225280000
Offset: 5

Author

Keywords

Examples

			For n=5, the a(5)=280 solution is 5!*((7/3)*(5-4)+4*(5-5)+(7/6)(5-6)(5-7)[5>5]+(1/18)*(5-7)(5-8)(5-9)[5>6]+(1/1944)[5>7]*(5-8)!/(5-12)!)=5!*(7/3)*(5-4)=280.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^7-27*x^6+216*x^5-702*x^4+972*x^3-405*x^2-243*x+189)*x^5/((3^4)*(1-x)^5), {x,0,22}], x]Table[n!, {n,0,22}] (* Stefano Spezia, Sep 27 2022 *)

Formula

a(n) = n!*((7/3)*(n-4)+4*(n-5)+(7/6)(n-6)(n-7)[n>5]+(1/18)*(n-7)(n-8)(n-9)[n>6]+(1/1944)[n>7]*(n-8)!/(n-12)!) (see Kadane).
E.g.f.: (x^7-27*x^6+216*x^5-702*x^4+972*x^3-405*x^2-243*x+189)*x^5/((3^4)*(1-x)^5).

A357266 Number of n-node tournaments that have exactly five circular triads.

Original entry on oeis.org

24, 3648, 90384, 1304576, 19958400, 311592960, 5054353920, 85709352960, 1523221539840, 28387834675200, 554575551129600, 11345938174771200, 242796629621145600, 5427273747293798400, 126546947417899008000
Offset: 5

Author

Keywords

Crossrefs

Formula

Kadane proves that a(n) = n!*((1/5)*(n-4)+(14/3)*(n-5)+8*(n-6)I(n>5)+(7/9)*(n-6)*(n-7)I(n>5)+(10/3)*(n-7)*(n-8)I(n>6)+(5/18)*(n-8)*(n-9)*(n-10)I(n>7)+(1/162)*(n-9)*(n-10)*(n-11)*(n-12)I(n>8)+(1/29160)*(n-10)*(n-11)*(n-12)*(n-13)*(n-14)I(n>9)), where I(p) is the indicator function: 1 if p is true and 0 otherwise.
E.g.f.: (5*x^10-180*x^9+2205*x^8-12150*x^7+34155*x^6-51840*x^5+38313*x^4-3942*x^3-11502*x^2+4698*x+243)*x^5/(5*3^5*(1-x)^6).