cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357248 Number of n-node tournaments that have exactly four circular triads.

Original entry on oeis.org

280, 6240, 75600, 954240, 12579840, 175392000, 2594592000, 40721049600, 677053977600, 11901451161600, 220690229760000, 4307253350400000, 88289523818496000, 1896762491559936000, 42625344258072576000, 1000193047805952000000, 24463730767033958400000, 622724156293184225280000
Offset: 5

Views

Author

Keywords

Examples

			For n=5, the a(5)=280 solution is 5!*((7/3)*(5-4)+4*(5-5)+(7/6)(5-6)(5-7)[5>5]+(1/18)*(5-7)(5-8)(5-9)[5>6]+(1/1944)[5>7]*(5-8)!/(5-12)!)=5!*(7/3)*(5-4)=280.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^7-27*x^6+216*x^5-702*x^4+972*x^3-405*x^2-243*x+189)*x^5/((3^4)*(1-x)^5), {x,0,22}], x]Table[n!, {n,0,22}] (* Stefano Spezia, Sep 27 2022 *)

Formula

a(n) = n!*((7/3)*(n-4)+4*(n-5)+(7/6)(n-6)(n-7)[n>5]+(1/18)*(n-7)(n-8)(n-9)[n>6]+(1/1944)[n>7]*(n-8)!/(n-12)!) (see Kadane).
E.g.f.: (x^7-27*x^6+216*x^5-702*x^4+972*x^3-405*x^2-243*x+189)*x^5/((3^4)*(1-x)^5).

A357257 Number of n-node tournaments that have exactly three circular triads.

Original entry on oeis.org

240, 2880, 33600, 403200, 5093760, 68275200, 972787200, 14724864000, 236396160000, 4016659046400, 72067387392000, 1362306097152000, 27071765360640000, 564357385912320000, 12317692759916544000, 280955128203509760000
Offset: 5

Views

Author

Keywords

Examples

			a(6) = 6!*(2*(6-4) + (1/3)*(6-5)*(6-6) + (1/162)*(6-6)*(6-7)*(6-8)*[6>5]) = 2880.
		

Crossrefs

Programs

  • Mathematica
    Table[n!*(2*(n-4) + (1/3)*(n-5)*(n-6) + (1/162)*(n-6)*(n-7)*(n-8)*Boole[n>5]), {n,5,20}] (* Stefano Spezia, Sep 27 2022 *)

Formula

a(n) = n!*(2*(n-4) + (1/3)*(n-5)*(n-6) + (1/162)*(n-6)*(n-7)*(n-8)*[n>5]) (see Kadane).
E.g.f.: (x^4 - 18*x^3 + 72*x^2 - 108*x + 54)*x^5/((3^3)*(1-x)^4).

A367265 Numbers k such that there exists i >= 1 such that k divides 3^3^i - 1.

Original entry on oeis.org

1, 2, 13, 26, 109, 218, 433, 757, 866, 1417, 1514, 2834, 3889, 5629, 7778, 8209, 9841, 11258, 16418, 17497, 19682, 34994, 47197, 50557, 52489, 58321, 70957, 82513, 94394, 101114, 104978, 106717, 116642, 141914, 165026, 213434, 227461, 327781, 423901, 454922, 613561, 655562, 682357, 758173, 847802, 894781, 922441
Offset: 1

Views

Author

Jianing Song, Nov 11 2023

Keywords

Comments

Note that 3^3^i - 1 divides 3^3^(i+1) - 1, so this sequence is also numbers k such that k divides 3^3^i - 1 for all sufficiently large i.
Also numbers k such that there exists i >= 1 such that k divides 3^^i - 1, where 3^^i = 3^3^...^3 (i times) = A014220(i-1).
Also numbers k such that ord(3,k) is a power of 3, where ord(a,k) is the multiplicative order of a modulo k: 3^3^i == 1 (mod k) if and only if ord(3,k) divides 3^i, so such i exists if and only if ord(3,k) is a power of 3.
If a term k is not squarefree, then it is divisible by p^2, where p is a Wieferich prime to base 3 (A014127) such that ord(3,p) is a power of 3. No such p is known.

Examples

			Suppose that q is an odd prime power such that ord(3,q) = 3^e. e = 1 gives q = 13; e = 2 gives q = 757; e = 3 gives q = 109, 433, 8209; e = 4 gives q = 3889, 1190701, 12557612956332313.
		

Crossrefs

Cf. A094358 (squarefree divisors of 2^2^i - 1), A357266 (divisors of 3^3^i + 1), A014127.
The subsequence of primes is given by A367648.

Programs

  • PARI
    isA357265(k) = (k%3!=0) && isprimepower(3*znorder(Mod(3,k)))
Showing 1-3 of 3 results.