cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357266 Number of n-node tournaments that have exactly five circular triads.

Original entry on oeis.org

24, 3648, 90384, 1304576, 19958400, 311592960, 5054353920, 85709352960, 1523221539840, 28387834675200, 554575551129600, 11345938174771200, 242796629621145600, 5427273747293798400, 126546947417899008000
Offset: 5

Views

Author

Keywords

Crossrefs

Formula

Kadane proves that a(n) = n!*((1/5)*(n-4)+(14/3)*(n-5)+8*(n-6)I(n>5)+(7/9)*(n-6)*(n-7)I(n>5)+(10/3)*(n-7)*(n-8)I(n>6)+(5/18)*(n-8)*(n-9)*(n-10)I(n>7)+(1/162)*(n-9)*(n-10)*(n-11)*(n-12)I(n>8)+(1/29160)*(n-10)*(n-11)*(n-12)*(n-13)*(n-14)I(n>9)), where I(p) is the indicator function: 1 if p is true and 0 otherwise.
E.g.f.: (5*x^10-180*x^9+2205*x^8-12150*x^7+34155*x^6-51840*x^5+38313*x^4-3942*x^3-11502*x^2+4698*x+243)*x^5/(5*3^5*(1-x)^6).

A357257 Number of n-node tournaments that have exactly three circular triads.

Original entry on oeis.org

240, 2880, 33600, 403200, 5093760, 68275200, 972787200, 14724864000, 236396160000, 4016659046400, 72067387392000, 1362306097152000, 27071765360640000, 564357385912320000, 12317692759916544000, 280955128203509760000
Offset: 5

Views

Author

Keywords

Examples

			a(6) = 6!*(2*(6-4) + (1/3)*(6-5)*(6-6) + (1/162)*(6-6)*(6-7)*(6-8)*[6>5]) = 2880.
		

Crossrefs

Programs

  • Mathematica
    Table[n!*(2*(n-4) + (1/3)*(n-5)*(n-6) + (1/162)*(n-6)*(n-7)*(n-8)*Boole[n>5]), {n,5,20}] (* Stefano Spezia, Sep 27 2022 *)

Formula

a(n) = n!*(2*(n-4) + (1/3)*(n-5)*(n-6) + (1/162)*(n-6)*(n-7)*(n-8)*[n>5]) (see Kadane).
E.g.f.: (x^4 - 18*x^3 + 72*x^2 - 108*x + 54)*x^5/((3^3)*(1-x)^4).
Showing 1-2 of 2 results.