A370667
Largest pandigital number whose n-th power contains each digit (0-9) exactly n times.
Original entry on oeis.org
9876543210, 9876124053, 9863527104, 9846032571, 9847103256, 9247560381
Offset: 1
a(4) = 9846032571 because it is the largest 10-digit number that contains each digit (0-9) exactly once and its 4th power 9398208429603554221689707364750715341681 contains each digit (0-9) exactly 4 times.
-
s=FromDigits/@Permutations[Range[0,9]];For[n=1,n<=6,n++,For[k=Length@s,k>0,k--,If[Count[Tally[IntegerDigits[s[[k]]^n]][[All,2]],n]==10,Print[{n,s[[k]]}];Break[]]]]
-
from itertools import permutations
a=[]
for n in range(1,7):
for k in [int(''.join(d)) for d in permutations('9876543210', 10)]:
if all(str(k**n).count(d) ==n for d in '0123456789'):
a.append(k)
break
print(a)
A371469
Least pandigital number whose n-th power contains each digit (0-9) exactly n times.
Original entry on oeis.org
1023456789, 3175462089, 4680215379, 5702631489, 7351062489, 7025869314
Offset: 1
a(4) = 5702631489 because it is the least 10-digit number that contains each digit (0-9) exactly once and its 4th power 1057550783692741389295697108242363408641 contains each digit (0-9) exactly 4 times.
Cf.
A050278,
A199630,
A199631,
A199632,
A199633,
A078255,
A154532,
A154566,
A357755,
A365144,
A370667.
-
s = FromDigits /@ Permutations[Range[0, 9]]; For[n = 1, n < 7, n++,
For[k = 1, k <= Length@s, k++,
If[Count[Tally[IntegerDigits[s[[k]]^n]][[All, 2]], n] == 10,
Print[{n, s[[k]]}]; Break[]]]]
-
from itertools import permutations as per
a=[]
for n in range(1,7):
for k in [int(''.join(d)) for d in per('0123456789', 10)]:
if all(str(k**n).count(d) ==n for d in '0123456789'):
a.append(k)
break
print(a)
Showing 1-2 of 2 results.
Comments