cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357925 a(n) = Sum_{k=0..floor(n/3)} Stirling2(n - 2*k,n - 3*k).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 7, 12, 23, 47, 95, 192, 402, 869, 1898, 4181, 9379, 21431, 49556, 115770, 273919, 656476, 1590061, 3888783, 9608337, 23980678, 60402964, 153469477, 393325442, 1016628823, 2648842279, 6955029849, 18400676786, 49042936328, 131646082259
Offset: 0

Views

Author

Seiichi Manyama, Oct 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS2[n-2k,n-3k],{k,0,Floor[n/3]}],{n,0,40}] (* Harvey P. Dale, Feb 22 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, stirling(n-2*k, n-3*k, 2));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/prod(j=1, k, 1-j*x^3)))

Formula

G.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - j * x^3).

A357932 a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n - 3*k,n - 4*k)|.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 7, 11, 18, 33, 64, 122, 227, 428, 838, 1684, 3396, 6841, 13912, 28787, 60398, 127559, 270687, 579055, 1251706, 2730345, 5994501, 13238058, 29436628, 65951104, 148777927, 337606123, 770418129, 1768566987, 4084504483, 9486890220
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, abs(stirling(n-3*k, n-4*k, 1)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, 1+j*x^3)))

Formula

G.f.: Sum_{k>=0} x^k * Product_{j=0..k-1} (1 + j * x^3).

A357941 a(n) = Sum_{k=0..floor(n/4)} Stirling2(k,n - 4*k).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 3, 1, 0, 1, 7, 6, 1, 1, 15, 25, 10, 2, 31, 90, 65, 16, 64, 301, 350, 141, 148, 967, 1701, 1051, 521, 3053, 7771, 6952, 3157, 9792, 34141, 42527, 23850, 34381, 146500, 246776, 181535, 150513, 623381, 1380556, 1327802, 889022, 2691557, 7530777
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, stirling(k, n-4*k, 2));
    
  • PARI
    my(N=60, x='x+O('x^N)); Vec(sum(k=0, N, x^(5*k)/prod(j=1, k, 1-j*x^4)))

Formula

G.f.: Sum_{k>=0} x^(5*k)/Product_{j=1..k} (1 - j * x^4).
Showing 1-3 of 3 results.