A358162 a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i,j] = ceiling(i*j/3).
1, 1, 11, 530, 71196, 18680148, 8825763888, 6969574132560, 8223753750015600, 14043461354695317600, 33726601900489760438400
Offset: 0
Examples
a(2) = 11: 1 1 1 2 1 2 2 3 1 2 3 4 2 3 4 6
Links
- Wikipedia, Hafnian
- Wikipedia, Symmetric matrix
Crossrefs
Programs
-
Mathematica
M[i_, j_, n_]:=Part[Part[Table[Ceiling[r*c/3], {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
-
PARI
tm(n) = matrix(n, n, i, j, ceil((i*j)/3)); a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
Extensions
a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 15 2023
Comments