A359070 Smallest k > 1 such that k^n - 1 is the product of n distinct primes.
3, 4, 15, 12, 39, 54, 79, 86, 144, 318, 1591, 144, 20131, 2014, 1764, 1308, 46656, 1296
Offset: 1
Examples
a(3) = 15 since 15^3 - 1 = 3374 = 2*7*241 is the product of 3 distinct primes and 15 is the smallest number with this property.
Programs
-
PARI
isok(k, n) = my(f=factor(k^n - 1)); issquarefree(f) && (omega(f) == n); a(n) = my(k=2); while (!isok(k, n), k++); k; \\ Michel Marcus, Dec 15 2022
Formula
a(n) >= A219019(n). - Daniel Suteu, Dec 16 2022
Comments