cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A219019 Smallest number k > 1 such that k^n - 1 contains n distinct prime divisors.

Original entry on oeis.org

3, 4, 7, 8, 16, 11, 79, 44, 81, 91, 1024, 47, 12769, 389, 256, 413, 46656, 373, 1048576, 1000, 4096, 43541
Offset: 1

Views

Author

Michel Lagneau, Nov 09 2012

Keywords

Comments

365000 < a(19) <= 1048576; a(20) = 1000; a(21) = 4096; a(22) = 43541. - Daniel Suteu, Jul 10 2022

Examples

			a(3) = 7 is the smallest number of the set {k(i)} = {7, 9, 13, 15, 19, 21, ...} where k(i)^3 - 1 contains 3 distinct prime divisors.
		

Crossrefs

Programs

  • Maple
    with(numtheory) :for n from 1 to 10 do:ii:=0:for k from 1 to 10^10 while(ii=0) do:x:=k^n-1:y:=factorset(x):n1:=nops(y):if n1=n then ii:=1: printf ( "%d %d \n",n,k):
    else fi:od:od:
  • Mathematica
    L = {}; Do[n = 1; While[Length[FactorInteger[n^k - 1]] != k, n++];  Print@AppendTo[L, n], {k, 15}] (* Giovanni Resta, Nov 10 2012 *)
    snk[n_]:=Module[{k=2},While[PrimeNu[k^n-1]!=n,k++];k]; Array[snk,22] (* Harvey P. Dale, Mar 27 2025 *)
  • PARI
    a(n) = my(k=2); while (omega(k^n-1) != n, k++); k; \\ Daniel Suteu, Jul 10 2022

Extensions

a(13)-a(18), a(20)-a(22) from Daniel Suteu, Jul 10 2022
a(19) from Jinyuan Wang, Feb 13 2023

A359069 Smallest prime p such that p^(2n-1) - 1 is the product of 2n-1 distinct primes.

Original entry on oeis.org

3, 59, 47, 79, 347, 6343, 56711, 4523
Offset: 1

Views

Author

Kevin P. Thompson, Dec 15 2022

Keywords

Comments

a(9) > 113500.
a(9) > 1000000, a(10) > 237000, a(11) > 209021. - Sean A. Irvine, Jan 10 2023
a(n)-1 is squarefree for all n. - Chai Wah Wu, Jan 30 2023

Examples

			a(3) = 47 since 47^(2*3-1) - 1 = 229345006 = 2*11*23*31*14621 is the product of 5 distinct primes and 47 is the smallest prime number with this property.
		

Crossrefs

Programs

  • PARI
    isok(p, n) = my(f=factor(p^(2*n-1)-1)); issquarefree(f) && (omega(f) == 2*n-1);
    a(n) = my(p=2); while (!isok(p, n), p=nextprime(p+1)); p; \\ Michel Marcus, Dec 15 2022

A368163 a(n) is the smallest number k > 1 such that bigomega(k^n - 1) = n.

Original entry on oeis.org

3, 4, 4, 10, 17, 8, 25, 5, 28, 9, 81, 13, 289, 64, 100, 41, 6561, 31, 6657, 57, 529, 1025
Offset: 1

Views

Author

Daniel Suteu, Dec 14 2023

Keywords

Comments

a(23) <= 196609; a(24) = 79; a(25) <= 28561; a(26) = 14015; a(27) = 961; a(28) = 729; a(30) = 361; a(32) = 2047.

Examples

			a(5) = 17 is the smallest number of the set {k(i)} = {17, 19, 21, 26, 27, 39, 45, ...} where k(i)^5 - 1 has exactly 5 prime factors counted with multiplicity.
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=2); while (bigomega(k^n-1) != n, k++); k;
Showing 1-3 of 3 results.