A359893
Triangle read by rows where T(n,k) is the number of integer partitions of n with median k, where k ranges from 1 to n in steps of 1/2.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 0, 0, 1, 2, 0, 2, 0, 0, 0, 1, 3, 0, 1, 2, 0, 0, 0, 0, 1, 4, 1, 2, 0, 3, 0, 0, 0, 0, 0, 1, 6, 1, 3, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 8, 1, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 11, 2, 7, 1, 3, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1
1 0 1
1 1 0 0 1
2 0 2 0 0 0 1
3 0 1 2 0 0 0 0 1
4 1 2 0 3 0 0 0 0 0 1
6 1 3 0 1 3 0 0 0 0 0 0 1
8 1 6 0 2 0 4 0 0 0 0 0 0 0 1
11 2 7 1 3 0 1 4 0 0 0 0 0 0 0 0 1
15 2 10 3 4 0 2 0 5 0 0 0 0 0 0 0 0 0 1
20 3 13 3 7 0 3 0 1 5 0 0 0 0 0 0 0 0 0 0 1
26 4 19 3 11 1 4 0 2 0 6 0 0 0 0 0 0 0 0 0 0 0 1
For example, row n = 8 counts the following partitions:
611 4211 422 . 332 . 44 . . . . . . . 8
5111 521 431 53
32111 2222 62
41111 3221 71
221111 3311
311111 22211
2111111
11111111
Row lengths are 2n-1 =
A005408(n-1).
The median statistic is ranked by
A360005(n)/2.
A240219 counts partitions w/ the same mean as median, complement
A359894.
-
Table[Length[Select[IntegerPartitions[n], Median[#]==k&]],{n,1,10},{k,1,n,1/2}]
A360005
Two times the median of the multiset of prime indices of n.
Original entry on oeis.org
2, 4, 2, 6, 3, 8, 2, 4, 4, 10, 2, 12, 5, 5, 2, 14, 4, 16, 2, 6, 6, 18, 2, 6, 7, 4, 2, 20, 4, 22, 2, 7, 8, 7, 3, 24, 9, 8, 2, 26, 4, 28, 2, 4, 10, 30, 2, 8, 6, 9, 2, 32, 4, 8, 2, 10, 11, 34, 3, 36, 12, 4, 2, 9, 4, 38, 2, 11, 6, 40, 2, 42, 13, 6, 2, 9, 4, 44, 2
Offset: 2
The prime indices of 360 are {1,1,1,2,2,3}, with median 3/2, so a(360) = 3.
A316413 lists numbers whose prime indices have integer mean.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[2*Median[prix[n]],{n,2,100}]
A359901
Triangle read by rows where T(n,k) is the number of integer partitions of n with median k = 1..n.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 2, 2, 0, 1, 3, 1, 0, 0, 1, 4, 2, 3, 0, 0, 1, 6, 3, 1, 0, 0, 0, 1, 8, 6, 2, 4, 0, 0, 0, 1, 11, 7, 3, 1, 0, 0, 0, 0, 1, 15, 10, 4, 2, 5, 0, 0, 0, 0, 1, 20, 13, 7, 3, 1, 0, 0, 0, 0, 0, 1, 26, 19, 11, 4, 2, 6, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1
1 1
1 0 1
2 2 0 1
3 1 0 0 1
4 2 3 0 0 1
6 3 1 0 0 0 1
8 6 2 4 0 0 0 1
11 7 3 1 0 0 0 0 1
15 10 4 2 5 0 0 0 0 1
20 13 7 3 1 0 0 0 0 0 1
26 19 11 4 2 6 0 0 0 0 0 1
35 24 14 5 3 1 0 0 0 0 0 0 1
45 34 17 8 4 2 7 0 0 0 0 0 0 1
58 42 23 12 5 3 1 0 0 0 0 0 0 0 1
For example, row n = 9 counts the following partitions:
(7,1,1) (5,2,2) (3,3,3) (4,4,1) . . . . (9)
(6,1,1,1) (6,2,1) (4,3,2)
(3,3,1,1,1) (3,2,2,2) (5,3,1)
(4,2,1,1,1) (4,2,2,1)
(5,1,1,1,1) (4,3,1,1)
(3,2,1,1,1,1) (2,2,2,2,1)
(4,1,1,1,1,1) (3,2,2,1,1)
(2,2,1,1,1,1,1)
(3,1,1,1,1,1,1)
(2,1,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,1)
Including half-steps gives
A359893.
The median statistic is ranked by
A360005(n)/2.
A240219 counts partitions w/ the same mean as median, complement
A359894.
-
Table[Length[Select[IntegerPartitions[n],Median[#]==k&]],{n,15},{k,n}]
A359902
Triangle read by rows where T(n,k) is the number of odd-length integer partitions of n with median k.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 4, 2, 1, 0, 0, 0, 1, 4, 3, 2, 0, 0, 0, 0, 1, 7, 4, 3, 1, 0, 0, 0, 0, 1, 8, 6, 3, 2, 0, 0, 0, 0, 0, 1, 12, 8, 4, 3, 1, 0, 0, 0, 0, 0, 1, 14, 11, 5, 4, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1
0 1
1 0 1
1 0 0 1
2 1 0 0 1
2 2 0 0 0 1
4 2 1 0 0 0 1
4 3 2 0 0 0 0 1
7 4 3 1 0 0 0 0 1
8 6 3 2 0 0 0 0 0 1
12 8 4 3 1 0 0 0 0 0 1
14 11 5 4 2 0 0 0 0 0 0 1
21 14 8 4 3 1 0 0 0 0 0 0 1
24 20 10 5 4 2 0 0 0 0 0 0 0 1
34 25 15 6 5 3 1 0 0 0 0 0 0 0 1
For example, row n = 9 counts the following partitions:
(7,1,1) (5,2,2) (3,3,3) (4,4,1) . . . . (9)
(3,3,1,1,1) (6,2,1) (4,3,2)
(4,2,1,1,1) (2,2,2,2,1) (5,3,1)
(5,1,1,1,1) (3,2,2,1,1)
(2,2,1,1,1,1,1)
(3,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,1)
The median statistic is ranked by
A360005(n)/2.
A240219 counts partitions w/ the same mean as median, complement
A359894.
-
Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Median[#]==k&]],{n,15},{k,n}]
A359889
Numbers that are 1 or whose prime indices have the same mean as median.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94
Offset: 1
The prime indices of 900 are {1,1,2,2,3,3}, with mean 2 and median 2, so 900 is in the sequence.
The RHS (median of prime indices) is
A360005/2.
A316413 lists numbers whose prime indices have integer mean.
A359908 lists numbers whose prime indices have integer median.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],#==1||Mean[prix[#]]==Median[prix[#]]&]
A360457
Two times the median of the set of distinct prime indices of n; a(1) = 1.
Original entry on oeis.org
1, 2, 4, 2, 6, 3, 8, 2, 4, 4, 10, 3, 12, 5, 5, 2, 14, 3, 16, 4, 6, 6, 18, 3, 6, 7, 4, 5, 20, 4, 22, 2, 7, 8, 7, 3, 24, 9, 8, 4, 26, 4, 28, 6, 5, 10, 30, 3, 8, 4, 9, 7, 32, 3, 8, 5, 10, 11, 34, 4, 36, 12, 6, 2, 9, 4, 38, 8, 11, 6, 40, 3, 42, 13, 5, 9, 9, 4, 44, 4
Offset: 1
The prime indices of 65 are {3,6}, with distinct parts {3,6}, with median 9/2, so a(65) = 9.
The prime indices of 900 are {1,1,2,2,3,3}, with distinct parts {1,2,3}, with median 2, so a(900) = 4.
The version for divisors is
A063655.
The version for all prime indices is
A360005.
The version for distinct prime factors is
A360458.
The version for all prime factors is
A360459.
The version for prime multiplicities is
A360460.
Positions of even terms are
A360550.
Positions of odd terms are
A360551.
The version for 0-prepended differences is
A360555.
A304038 lists distinct prime indices.
-
Table[If[n==1,1,2*Median[PrimePi/@First/@FactorInteger[n]]],{n,100}]
A360006
Least positive integer whose prime indices have median n/2. a(1) = 1.
Original entry on oeis.org
1, 2, 6, 3, 14, 5, 26, 7, 38, 11, 58, 13, 74, 17, 86, 19, 106, 23, 122, 29, 142, 31, 158, 37, 178, 41, 202, 43, 214, 47, 226, 53, 262, 59, 278, 61, 302, 67, 326, 71, 346, 73, 362, 79, 386, 83, 398, 89, 446, 97, 458, 101, 478, 103, 502, 107, 526, 109, 542, 113
Offset: 1
Position of first appearance of n in
A360005.
A316413 lists numbers whose prime indices have integer mean.
A359908 = numbers w/ integer median of prime indices, complement
A359912.
-
nn=100;
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
seq=Table[If[n==1,1,2*Median[prix[n]]],{n,nn}];
Table[Position[seq,k][[1,1]],{k,Count[Differences[Union[seq]],1]}]
A360679
Sum of the right half (inclusive) of the prime indices of n.
Original entry on oeis.org
0, 1, 2, 1, 3, 2, 4, 2, 2, 3, 5, 3, 6, 4, 3, 2, 7, 4, 8, 4, 4, 5, 9, 3, 3, 6, 4, 5, 10, 5, 11, 3, 5, 7, 4, 4, 12, 8, 6, 4, 13, 6, 14, 6, 5, 9, 15, 4, 4, 6, 7, 7, 16, 4, 5, 5, 8, 10, 17, 5, 18, 11, 6, 3, 6, 7, 19, 8, 9, 7, 20, 5, 21, 12, 6, 9, 5, 8, 22, 5, 4
Offset: 1
The prime indices of 810 are {1,2,2,2,2,3}, with right half (inclusive) {2,2,3}, so a(810) = 7.
The prime indices of 3675 are {2,3,3,4,4}, with right half (inclusive) {3,4,4}, so a(3675) = 11.
Positions of first appearances are 1 and
A001248.
These partitions are counted by
A360672 with rows reversed.
First for prime indices, second for partitions, third for prime factors:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Total[Take[prix[n],-Ceiling[Length[prix[n]]/2]]],{n,100}]
A360459
Two times the median of the multiset of prime factors of n; a(1) = 2.
Original entry on oeis.org
2, 4, 6, 4, 10, 5, 14, 4, 6, 7, 22, 4, 26, 9, 8, 4, 34, 6, 38, 4, 10, 13, 46, 4, 10, 15, 6, 4, 58, 6, 62, 4, 14, 19, 12, 5, 74, 21, 16, 4, 82, 6, 86, 4, 6, 25, 94, 4, 14, 10, 20, 4, 106, 6, 16, 4, 22, 31, 118, 5, 122, 33, 6, 4, 18, 6, 134, 4, 26, 10, 142, 4, 146
Offset: 1
The prime factors of 60 are {2,2,3,5}, with median 5/2, so a(60) = 5.
The version for divisors is
A063655.
Positions of odd terms are
A072978 (except 1).
Positions of even terms are
A359913 (and 1).
The version for prime indices is
A360005.
The version for distinct prime indices is
A360457.
The version for distinct prime factors is
A360458.
The version for prime multiplicities is
A360460.
The version for 0-prepended differences is
A360555.
Cf.
A000975,
A026424,
A027336,
A078174,
A316413,
A359907,
A359908,
A360006,
A360007,
A360248,
A360552.
A359913
Numbers whose multiset of prime factors has integer median.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81
Offset: 1
The terms together with their prime factors begin:
2: {2}
3: {3}
4: {2,2}
5: {5}
7: {7}
8: {2,2,2}
9: {3,3}
11: {11}
12: {2,2,3}
13: {13}
15: {3,5}
16: {2,2,2,2}
17: {17}
18: {2,3,3}
19: {19}
20: {2,2,5}
21: {3,7}
23: {23}
24: {2,2,2,3}
Prime factors are listed by
A027746.
For mean instead of median we have
A078175, for prime indices
A316413.
For prime indices instead of factors we have
A359908, counted by
A325347.
Positions of even terms in
A360005.
A067340 lists numbers whose prime signature has integer mean.
Showing 1-10 of 12 results.
Comments