cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360857 Triangle read by rows. T(n, k) = binomial(n, ceil(k/2)) * binomial(n + 1, floor(k/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 1, 3, 12, 12, 1, 4, 20, 30, 60, 1, 5, 30, 60, 150, 150, 1, 6, 42, 105, 315, 420, 700, 1, 7, 56, 168, 588, 980, 1960, 1960, 1, 8, 72, 252, 1008, 2016, 4704, 5880, 8820, 1, 9, 90, 360, 1620, 3780, 10080, 15120, 26460, 26460
Offset: 0

Views

Author

Peter Luschny, Feb 28 2023

Keywords

Examples

			Table T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 2,  6;
[3] 1, 3, 12,  12;
[4] 1, 4, 20,  30,   60;
[5] 1, 5, 30,  60,  150,  150;
[6] 1, 6, 42, 105,  315,  420,   700;
[7] 1, 7, 56, 168,  588,  980,  1960,  1960;
[8] 1, 8, 72, 252, 1008, 2016,  4704,  5880,  8820;
[9] 1, 9, 90, 360, 1620, 3780, 10080, 15120, 26460, 26460.
		

Crossrefs

Programs

  • Maple
    A360857 := (n, k) -> binomial(n, ceil(k/2))*binomial(n + 1, floor(k/2)):
    seq(seq(A360857(n, k), k=0..n), n=0..9);
  • Mathematica
    Table[Binomial[n,Ceiling[k/2]]Binomial[n+1,Floor[k/2]],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 06 2023 *)
  • Python
    from math import comb
    def A360857_T(n,k): return comb(n+1,m:=k>>1)**2*(n+1-m)*(n-m)//((m+1)*(n+1)) if k&1 else comb(n+1,m:=k>>1)**2*(n+1-m)//(n+1) # Chai Wah Wu, Feb 28 2023

A360858 Triangle read by rows. T(n, k) = binomial(n + 1, ceil(k/2)) * binomial(n, floor(k/2)).

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 12, 18, 1, 5, 20, 40, 60, 1, 6, 30, 75, 150, 200, 1, 7, 42, 126, 315, 525, 700, 1, 8, 56, 196, 588, 1176, 1960, 2450, 1, 9, 72, 288, 1008, 2352, 4704, 7056, 8820, 1, 10, 90, 405, 1620, 4320, 10080, 17640, 26460, 31752
Offset: 0

Views

Author

Peter Luschny, Feb 28 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 1,  2;
[2] 1,  3,  6;
[3] 1,  4, 12,  18;
[4] 1,  5, 20,  40,   60;
[5] 1,  6, 30,  75,  150,  200;
[6] 1,  7, 42, 126,  315,  525,   700;
[7] 1,  8, 56, 196,  588, 1176,  1960,  2450;
[8] 1,  9, 72, 288, 1008, 2352,  4704,  7056,  8820;
[9] 1, 10, 90, 405, 1620, 4320, 10080, 17640, 26460, 31752.
		

Crossrefs

Cf. A005566 (main diagonal), A001700 (row sums).

Programs

  • Maple
    A360858 := (n, k) -> binomial(n + 1, ceil(k/2))*binomial(n, floor(k/2)):
    seq(seq(A360858(n, k), k = 0..n), n = 0..9);
  • Python
    from math import comb
    def A360858_T(n,k): return comb(n,m:=k>>1)**2*(n+1)//(m+1 if k&1 else n+1-m) # Chai Wah Wu, Feb 28 2023

A360861 a(n) = Sum_{k=0..n} binomial(n, ceiling(k/2)) * binomial(n, floor(k/2)).

Original entry on oeis.org

1, 2, 7, 22, 81, 281, 1058, 3830, 14605, 54127, 208110, 782761, 3027038, 11501478, 44668692, 170974710, 666220005, 2564271875, 10018268150, 38728479647, 151631858378, 588229029258, 2307174835212, 8975958379817, 35258881445606, 137501193282026, 540821096592028
Offset: 0

Views

Author

Peter Luschny, Feb 28 2023

Keywords

Crossrefs

Row sums of A360859.

Programs

  • Mathematica
    A360861[n_]:=(Binomial[2n+1,n]+Binomial[n,Floor[n/2]]^2)/2;
    Array[A360861,30,0] (* Paolo Xausa, Dec 11 2023 *)
  • Maxima
    a(n):=(1/2)*(binomial(2*n+1,n)+(binomial(n,floor(n/2)))^2); /* Tani Akinari, Jul 12 2023 */
  • Python
    from math import comb
    def A360861(n): return sum(comb(n,m:=k>>1)**2*(n-m)//(m+1) for k in range(1,n+1,2)) + sum(comb(n,k>>1)**2 for k in range(0,n+1,2)) # Chai Wah Wu, Feb 28 2023
    

Formula

a(n) = (1/2)*(binomial(2*n+1,n)+binomial(n,floor(n/2))^2). - Tani Akinari, Jul 12 2023
Showing 1-3 of 3 results.