A361066
E.g.f. satisfies A(x) = exp( (x/(1-x)) * A(x)^3 ).
Original entry on oeis.org
1, 1, 9, 148, 3673, 123276, 5234599, 269262022, 16279709793, 1131627199816, 88926737901031, 7796168316687906, 754414052156289265, 79872584117422215484, 9184299004593618881655, 1139822558262829096519726, 151857077047173825979147969
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[(x/(1 - x))*A[x]^3] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n, (3*k+1)^(k-1)*binomial(n-1, n-k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x/(1-x))/3)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((-(1-x)/(3*x)*lambertw(-3*x/(1-x)))^(1/3)))
A361068
E.g.f. satisfies A(x) = exp( x/((1-x) * A(x)^2) ).
Original entry on oeis.org
1, 1, -1, 13, -127, 2101, -41801, 1030177, -29820127, 995977801, -37660751569, 1590847310581, -74242656468575, 3793664894534269, -210656932372422745, 12630986901470435401, -813335155262348743231, 55977540398642247218449
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[x/((1 - x)*A[x]^2)] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n, (-2*k+1)^(k-1)*binomial(n-1, n-k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(2*x/(1-x))/2)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt((1-x)/(2*x)*lambertw(2*x/(1-x)))))
A361093
E.g.f. satisfies A(x) = exp( 1/(1 - x * A(x)^2) - 1 ).
Original entry on oeis.org
1, 1, 7, 97, 2049, 58541, 2114143, 92419965, 4746108769, 280105517881, 18683156508471, 1389960074426969, 114119472522112225, 10249863809271551973, 999746622121255094479, 105236583967331849218741, 11891012005206169120252737, 1435560112909007680593616625
Offset: 0
-
Table[n! * Sum[(2*n+1)^(k-1) * Binomial[n-1,n-k]/k!, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Mar 02 2023 *)
-
a(n) = n!*sum(k=0, n, (2*n+1)^(k-1)*binomial(n-1, n-k)/k!);
A361069
E.g.f. satisfies A(x) = exp( x/((1-x) * A(x)^3) ).
Original entry on oeis.org
1, 1, -3, 40, -719, 18396, -598157, 23713726, -1108701519, 59735988424, -3644505746549, 248358786667674, -18697767289462967, 1541202721786228060, -138046868771541971373, 13351368704222195975206, -1386710317839048140282783, 153939247458296219191539984
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[x/((1 - x)*A[x]^3)] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n, (-3*k+1)^(k-1)*binomial(n-1, n-k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(3*x/(1-x))/3)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/((1-x)/(3*x)*lambertw(3*x/(1-x)))^(1/3)))
A362773
E.g.f. satisfies A(x) = exp( x * (1+x) * A(x)^2 ).
Original entry on oeis.org
1, 1, 7, 79, 1377, 32161, 947623, 33746511, 1410518273, 67714577857, 3672410420871, 222082390164559, 14817864737168353, 1081393797641087841, 85691459902207874471, 7327398378967991154511, 672511583942513406768897, 65943097191889528063033729
Offset: 0
-
nmax = 20; CoefficientList[Series[Sqrt[LambertW[-2*x * (1+x)]/(-2*x * (1+x))], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 10 2023 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*(1+x))/2)))
A361067
E.g.f. satisfies A(x) = exp( x/((1-x) * A(x)) ).
Original entry on oeis.org
1, 1, 1, 4, 9, 76, 175, 3606, 833, 354376, -1605249, 65111410, -718371071, 20105327100, -351241054177, 9362931464446, -214514949732735, 6039303900168976, -165679758877120001, 5093296357218337386, -159900268661169533119, 5405435526807425433220
Offset: 0
-
nmax = 21; A[_] = 1;
Do[A[x_] = Exp[x/((1 - x)*A[x])] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n, (-k+1)^(k-1)*binomial(n-1, n-k)/k!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x/(1-x)))))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/((1-x)/x*lambertw(x/(1-x)))))
A362775
E.g.f. satisfies A(x) = exp( x/(1-x)^2 * A(x) ).
Original entry on oeis.org
1, 1, 7, 70, 965, 17216, 379207, 9969772, 305154313, 10668593008, 419714689931, 18358646058644, 884070662867053, 46486344447041032, 2650567497877525423, 162908800485532424236, 10737607698626311094033, 755571950776792829919968
Offset: 0
A361143
E.g.f. satisfies A(x) = exp( x*A(x)^4/(1 - x*A(x)^2) ).
Original entry on oeis.org
1, 1, 11, 241, 8105, 370061, 21403675, 1500521485, 123685912817, 11724012791929, 1256517775425131, 150254377493878505, 19833528195709809817, 2864566162751107839493, 449364739762263286489403, 76084967168410028438252101, 13829896583435315152843525985
Offset: 0
A360939
E.g.f. satisfies A(x) = exp( 2*x*A(x) / (1-x) ).
Original entry on oeis.org
1, 2, 16, 212, 4016, 99952, 3096448, 115063328, 4993598464, 248071645952, 13888585800704, 865481914527232, 59426130052458496, 4458258196636276736, 362864617248019800064, 31848507841521274769408, 2998685833332127139299328, 301504120063370711801724928
Offset: 0
-
a(n) = n!*sum(k=0, n, 2^k*(k+1)^(k-1)*binomial(n-1, n-k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1-x)))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-(1-x)/(2*x)*lambertw(-2*x/(1-x))))
A362776
E.g.f. satisfies A(x) = exp( x/(1-x)^2 * A(x)^2 ).
Original entry on oeis.org
1, 1, 9, 127, 2601, 70981, 2433673, 100697787, 4886085137, 272168650441, 17121437245161, 1200717094233559, 92892754255837561, 7859587210132504653, 721996671783802854377, 71564871858940414914451, 7613407794191946986893857, 865285095267929315207801233
Offset: 0
Showing 1-10 of 10 results.