A352448
Expansion of e.g.f. LambertW( -2*x/(1-x) ) / (-2*x).
Original entry on oeis.org
1, 3, 22, 278, 5128, 125592, 3850000, 142013328, 6129705088, 303238991744, 16920975718144, 1051612647426816, 72045481821580288, 5394849460316820480, 438392509692455286784, 38424395486908104071168, 3613476161122656804438016
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 22*x^2/2! + 278*x^3/3! + 5128*x^4/4! + 125592*x^5/5! + 3850000*x^6/6! + 142013328*x^7/7! + ...
such that A(x) = exp( 2*x*A(x) ) / (1-x), where
exp( 2*x*A(x) ) = 1 + 2*x + 16*x^2/2! + 212*x^3/3! + 4016*x^4/4! + 99952*x^5/5! + 3096448*x^6/6! + 115063328*x^7/7! + ...
Related table.
Another interesting property of the e.g.f. A(x) is illustrated here.
The table of coefficients of x^k/k! in 1/A(x)^n begins:
n=1: [1, -3, -4, -44, -736, -16832, -491168, ...];
n=2: [1, -6, 10, -16, -320, -8064, -249344, ...];
n=3: [1, -9, 42, -78, -48, -1776, -66528, ...];
n=4: [1, -12, 92, -392, 728, -128, -8960, ...];
n=5: [1, -15, 160, -1120, 4600, -8520, -320, ...];
n=6: [1, -18, 246, -2424, 16104, -64752, 119952, ...];
...
from which we can illustrate that the partial sum of coefficients of x^k, k=0..n, in 1/A(x)^n equals zero, for n > 1, as follows:
n=1:-2 = 1 + -3;
n=2: 0 = 1 + -6 + 10/2!;
n=3: 0 = 1 + -9 + 42/2! + -78/3!;
n=4: 0 = 1 + -12 + 92/2! + -392/3! + 728/4!;
n=5: 0 = 1 + -15 + 160/2! + -1120/3! + 4600/4! + -8520/5!;
n=6: 0 = 1 + -18 + 246/2! + -2424/3! + 16104/4! + -64752/5! + 119952/6!;
...
-
terms = 17; A[] = 0; Do[A[x] = Exp[2x*A[x]]/(1-x) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Mar 24 2025 *)
-
{a(n) = n!*polcoeff( (1/x)*serreverse( x/(exp(2*x +x^2*O(x^n)) + x) ),n)}
for(n=0,30,print1(a(n),", "))
-
my(x='x+O('x^30)); Vec(serlaplace(lambertw(-2*x/(1-x))/(-2*x))) \\ Michel Marcus, Mar 17 2022
-
a(n) = n!*sum(k=0, n, 2^k*(k+1)^(k-1)*binomial(n, k)/k!); \\ Seiichi Manyama, Mar 03 2023
A361065
E.g.f. satisfies A(x) = exp( (x/(1-x)) * A(x)^2 ).
Original entry on oeis.org
1, 1, 7, 85, 1521, 36421, 1097743, 39968601, 1707558401, 83777885929, 4643185678551, 286930307457949, 19562851003118833, 1458832806486727725, 118121195050068075167, 10320576944751955718881, 967863775658734350214017, 96970880819175875321264209
Offset: 0
-
A361065 := proc(n)
add((2*k+1)^(k-1)*binomial(n-1,n-k)/k!,k=0..n) ;
%*n! ;
end proc:
seq(A361065(n),n=0..10) ; # R. J. Mathar, Mar 02 2023
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[(x/(1 - x))*A[x]^2] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n, (2*k+1)^(k-1)*binomial(n-1, n-k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1-x))/2)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sqrt(-(1-x)/(2*x)*lambertw(-2*x/(1-x)))))
A361066
E.g.f. satisfies A(x) = exp( (x/(1-x)) * A(x)^3 ).
Original entry on oeis.org
1, 1, 9, 148, 3673, 123276, 5234599, 269262022, 16279709793, 1131627199816, 88926737901031, 7796168316687906, 754414052156289265, 79872584117422215484, 9184299004593618881655, 1139822558262829096519726, 151857077047173825979147969
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[(x/(1 - x))*A[x]^3] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n, (3*k+1)^(k-1)*binomial(n-1, n-k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x/(1-x))/3)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((-(1-x)/(3*x)*lambertw(-3*x/(1-x)))^(1/3)))
A361069
E.g.f. satisfies A(x) = exp( x/((1-x) * A(x)^3) ).
Original entry on oeis.org
1, 1, -3, 40, -719, 18396, -598157, 23713726, -1108701519, 59735988424, -3644505746549, 248358786667674, -18697767289462967, 1541202721786228060, -138046868771541971373, 13351368704222195975206, -1386710317839048140282783, 153939247458296219191539984
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[x/((1 - x)*A[x]^3)] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n, (-3*k+1)^(k-1)*binomial(n-1, n-k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(3*x/(1-x))/3)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/((1-x)/(3*x)*lambertw(3*x/(1-x)))^(1/3)))
A361067
E.g.f. satisfies A(x) = exp( x/((1-x) * A(x)) ).
Original entry on oeis.org
1, 1, 1, 4, 9, 76, 175, 3606, 833, 354376, -1605249, 65111410, -718371071, 20105327100, -351241054177, 9362931464446, -214514949732735, 6039303900168976, -165679758877120001, 5093296357218337386, -159900268661169533119, 5405435526807425433220
Offset: 0
-
nmax = 21; A[_] = 1;
Do[A[x_] = Exp[x/((1 - x)*A[x])] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
a(n) = n!*sum(k=0, n, (-k+1)^(k-1)*binomial(n-1, n-k)/k!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x/(1-x)))))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/((1-x)/x*lambertw(x/(1-x)))))
A361091
E.g.f. satisfies A(x) = exp( x/(1 - x/A(x)^2) ).
Original entry on oeis.org
1, 1, 3, 1, -71, -19, 10051, 12349, -3185391, -9346247, 1797304771, 9717361721, -1582301193527, -13722004186331, 2000705907453891, 25552516703201461, -3432004488804778079, -60960914621687232271, 7660860906885122096515
Offset: 0
A361193
E.g.f. satisfies A(x) = exp( -2*x*A(x) ) / (1-x).
Original entry on oeis.org
1, -1, 6, -50, 648, -10952, 232336, -5919664, 176435328, -6024464000, 231972167424, -9946181374208, 470038191434752, -24276240445152256, 1360508977539004416, -82233680186863536128, 5332689963474238341120, -369321737420738845638656
Offset: 0
-
a(n) = n!*sum(k=0, n, (-2)^k*(k+1)^(k-1)*binomial(n, k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(lambertw(2*x/(1-x))/(2*x)))
A361213
E.g.f. satisfies A(x) = exp( 2*x*A(x) / (1+x) ).
Original entry on oeis.org
1, 2, 8, 68, 848, 14192, 298048, 7546016, 223792640, 7612381952, 292216807424, 12497875215872, 589392367925248, 30386736933804032, 1700376343771136000, 102641314849948602368, 6648428846464054919168, 459977466799800897437696
Offset: 0
-
a(n) = (-1)^n*n!*sum(k=0, n, (-2)^k*(k+1)^(k-1)*binomial(n-1, n-k)/k!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1+x)))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-(1+x)/(2*x)*lambertw(-2*x/(1+x))))
A365039
E.g.f. satisfies A(x) = exp(x * (1 + x)/A(x)^2).
Original entry on oeis.org
1, 1, -1, 7, -79, 1201, -22961, 530167, -14372191, 447825889, -15776617249, 620209389031, -26918670325295, 1278598424153233, -65973615445792081, 3674793950748867031, -219773335672937703871, 14046128883828030510529, -955409650156763223984449
Offset: 0
Showing 1-9 of 9 results.
Comments