A361180 Primes p such that the odd part of p - 1 is upper-bounded by the dyadic valuation of p - 1.
3, 5, 17, 97, 193, 257, 641, 769, 12289, 18433, 40961, 65537, 114689, 147457, 163841, 786433, 1179649, 5767169, 7340033, 13631489, 23068673, 167772161, 469762049, 2013265921, 2281701377, 3221225473, 3489660929, 12348030977, 77309411329, 206158430209, 2061584302081, 2748779069441
Offset: 1
Keywords
Examples
3 is a term because the odd part of 2 is 1, the dyadic valuation of 2 is 1 and 1 <= 1. 641 = 5*2^7 + 1 is a term because the odd part of 640 is 5, the dyadic valuation of 640 is 7 and 5 <= 7.
Crossrefs
Programs
-
Maple
# Maple program due to David A. Corneth, Mar 03 2023 aList := proc(upto) local i, j, p, R: R := {}: for i from 1 to ilog2(upto) do for j from 1 to min(i, floor(upto/2^i)) do p := j*2^i+1: if isprime(p) then R := `union`(R, {p}): fi: od: od: R: end: aList(10^12);
-
PARI
isok(p) = if (isprime(p), my(m=valuation(p-1,2)); (p-1)/2^m <= m); \\ Michel Marcus, Mar 03 2023
-
PARI
upto(n) = {my(res = List()); for(i = 1, logint(n, 2), forstep(j = 1, min(i, n>>i), 2, if(isprime((j<David A. Corneth, Mar 03 2023
Extensions
a(17)..a(27) from Michel Marcus, Mar 03 2023
More terms from David A. Corneth, Mar 03 2023
Comments