cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361269 Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 4, 12, 0, 144, 168, 200, 0, 25696, 18768, 12384, 8688, 0, 18082560, 8697280, 3923040, 1914560, 936992, 0, 47025585664, 14670384000, 4512045120, 1622358720, 647087040, 242016192, 0, 450955726792704, 87781550054912, 17679638000640, 4496696041600, 1408276410240, 482302375296, 145763745920
Offset: 0

Views

Author

Geoffrey Critzer, Mar 06 2023

Keywords

Examples

			  1;
  0,     2;
  0,     4,    12;
  0,   144,   168,   200;
  0, 25696, 18768, 12384, 8688;
  ...
		

Crossrefs

Cf. A003030, A003024, A002416 (row sums).

Programs

  • Mathematica
    nn =15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
       Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; begf = Total[CoefficientList[ Series[1/(Total[CoefficientList[Series[ Exp[-u *s[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}],z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]] /. z -> 2 z;
    Range[0, nn]! CoefficientList[begf, {z, u}] // Grid (* Geoffrey Critzer, Mar 14 2023 after Andrew Howroyd *)
  • PARI
    Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e, p)={Z(p, k->e^(k*(k-1)/2))}
    RelEgf(n, e)={sum(k=0, n, e^(k^2)*x^k/k!, O(x*x^n) )}
    T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, RelEgf(n, e)))))))))]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 06 2023

Formula

E.g.f. for column 1: A(2*x) where A(x) is the e.g.f. for A003030.
E.g.f. for main diagonal: B(2*x) where B(x) is the e.g.f. for A003024.

Extensions

Terms a(15) and beyond from Andrew Howroyd, Mar 06 2023