cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A361455 Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 18, 21, 25, 0, 1606, 1173, 774, 543, 0, 565080, 271790, 122595, 59830, 29281, 0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503, 0, 3523091615568, 685793359804, 138122171880, 35130437825, 11002159455, 3767987307, 1138779265
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
  1;
  0,         1;
  0,         1,         3;
  0,        18,        21,       25;
  0,      1606,      1173,      774,      543;
  0,    565080,    271790,   122595,    59830,    29281;
  0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503;
  ...
		

Crossrefs

Column k=1 is A003030.
Main diagonal is A003024.
Row sums are A053763.
The unlabeled version is A361582.
Cf. A189898 (weak components), A361269 (loops allowed), A361591.

Programs

  • PARI
    Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e, p)={Z(p, k->e^(k*(k-1)/2))}
    DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
    T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e)))))))))]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) }

Formula

T(n,k) = A361269(n,k)/2^n.

A186081 Number of binary relations R on {1,2,...,n} such that the transitive closure of R is the trivial relation.

Original entry on oeis.org

1, 1, 4, 144, 25696, 18082560, 47025585664, 450955726792704, 16260917603754029056, 2253010420928564535951360, 1219004114245442237742488879104, 2601909995433633381004133738019815424, 22040854392120341022554569447470527813779456
Offset: 0

Views

Author

Geoffrey Critzer, Feb 12 2011

Keywords

Comments

For n >= 2, a(n) is the number of strongly connected binary relations on [n]. - Geoffrey Critzer, Dec 04 2023

Examples

			a(2)=4 because there are four relations on {1,2} whose transitive closure is {(1,1), (1,2), (2,1), (2,2)}. They are the three nontransitive relations,{(1,2), (2,1)}, {(1,2), (2,1), (2,2)}, {(1,1), (1,2), (2,1)} and the trivial relation itself.
		

Crossrefs

Programs

  • Mathematica
    Needs["Combinatorica`"];
    f[list_] := Apply[Plus, Table[MatrixPower[list,n], {n,1,Length[list]}]];
    Join[{1}, Table[Length[Select[Map[Flatten, Map[f, Tuples[Strings[{0, 1}, n], n]]], FreeQ[#, 0] &]], {n, 1, 4}]]
    (* Second program: *)
    a[ n_] := If[ n < 1, Boole[n == 0], With[{triv = matnk[n, 2^n^2 - 1]}, Sum[ Boole[triv === transitiveClosure[ matnk[n, k]]], {k, 0, 2^n^2 - 1}]]]; matnk[n_, k_] := Partition[ IntegerDigits[ k, 2, n^2], n]; transitiveClosure[x_] := FixedPoint[ Sign@(# + Dot[#, x]) &, x, Length@x]; (* Michael Somos, Mar 08 2012 *)

Formula

From Geoffrey Critzer, Dec 04 2023: (Start)
For n >= 2, a(n) = A003030(n)*2^n = A361269(n,1).
E.g.f.: 1 + s(2*x) - x where s(x) is the e.g.f. for A003030. (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 31 2015
a(6) from Bert Dobbelaere, Feb 16 2019
a(7)-a(12) from Geoffrey Critzer, Dec 04 2023

A365325 Triangular array read by rows. T(n,k) is the number of labeled digraphs (with self loops allowed) on [n] containing exactly k primitive components, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 4, 9, 3, 51, 298, 138, 25, 1831, 40815, 17853, 4494, 543, 166930, 23752151, 7418420, 1861755, 325895, 29281, 36681301, 55427713806, 10701675348, 2105585760, 391017795, 53021223, 3781503
Offset: 0

Views

Author

Geoffrey Critzer, Oct 22 2023

Keywords

Comments

A primitive component (A070322) is a strongly connected component (A003030) such that the gcd of the lengths of its cycles is 1.

Examples

			Triangle begins
   1;
   1,     1;
   4,     9,     3;
  51,   298,   138,   25;
1831, 40815, 17853, 4494, 543;
...
		

Crossrefs

Cf. A002416 (row sums), A003024 (main diagonal), A070322, A003030, A361269.

Programs

  • Mathematica
    nn = 6; B[n_] := 2^Binomial[n, 2] n!; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]];s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; primitive =
     Select[Import["https://oeis.org/A070322/b070322.txt", "Table"],
       Length@# == 2 &][[All, 2]]; pr[x_] := Total[primitive Table[x^i/i!, {i, 0, 6}]];ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /. Table[x^i ->x^i/2^Binomial[i, 2], {i, 0, nn}];
    Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[- (y (pr[x] - 1) + s[2 x] - (pr[x] - 1))]], {x,
          0, nn}], {x, y}]] // Grid

Formula

Sum_{n>=0} T(n,k)*y^k*x^n/(n!*2^binomial(n,2)) = 1/(E(x) @ exp(-(y*p(x)-1)+ s(2x) - (p(x)-1))) where E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)), p(x) is the e.g.f. for A070322, s(x) is the e.g.f. for A003030 and @ is the exponential Hadamard product (see Panafieu and Dovgal).
Showing 1-3 of 3 results.