A361683 a(n) is the least k such that tau(k) divides sigma_n(k) but not sigma(k), or -1 if no such k exists.
4, 64, 4, 7168, 4, 606528, 4, 64, 4, 4194304, 4
Offset: 2
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{k = 1, d}, While[Divisible[DivisorSigma[1, k], (d = DivisorSigma[0, k])] || !Divisible[DivisorSigma[n, k], d], k++]; k]; Array[a, 11, 2] (* Amiram Eldar, Mar 20 2023 *)
-
PARI
isok(k, n) = my(f=factor(k), nd=numdiv(f)); (sigma(f) % nd) && !(sigma(f,n) % nd); a(n) = my(k=1); while (!isok(k,n), k++); k; \\ Michel Marcus, Mar 20 2023
Formula
a(2*m) = 4 for m >= 1.
a(6*m-3) = 64 for m >= 1.
From Thomas Scheuerle, Mar 22 2023: (Start)
Conjecture: For primes q > p, a(q) > a(p). If true, we could replace "<=" with "=" in the above formula. (End)
Comments