cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A350383 a(n) = [x^n] 1/(1 + x + x^2)^n.

Original entry on oeis.org

1, -1, 1, 2, -15, 49, -98, 48, 561, -2860, 8151, -12948, -9282, 149226, -594320, 1428952, -1448655, -5538975, 37450900, -122995950, 239589735, -37528755, -1886983020, 8939152560, -24579514050, 35197176924, 51580335366, -541312482256, 2033695030128, -4624358661240
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1): seq(simplify(a(n)), n = 0..30); # Peter Bala, Apr 17 2023
  • Mathematica
    a[n_] := Coefficient[Series[1/(1 + x + x^2)^n, {x, 0, n}], x, n]; Array[a, 30, 0] (* Amiram Eldar, Dec 29 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1+k, k)*binomial(n, 3*k));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1+k,k) * binomial(n,3*k).
Recurrence: 3*(n-1)*n*(4*n - 7)*a(n) = -2*(n-1)*(28*n^2 - 63*n + 27)*a(n-1) - 3*(3*n - 5)*(3*n - 4)*(4*n - 3)*a(n-2). - Vaclav Kotesovec, Mar 18 2023
From Peter Bala, Apr 15 2023: (Start)
a(n) = (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1).
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. Cf. A228960.
More generally, let k be a positive integer, m an integer and let f(x) = g(x)/h(x), where g(x) and h(x) are both finite products of cyclotomic polynomials. Then we conjecture that the same supercongruences hold, except for a finite number of primes p depending on f(x), for the sequence {a_(k,m,f)(n): n >= 0} defined by a_(k,m,f)(n) = [x^(k*n)] f(x)^(m*n). (End)
From Peter Bala, Mar 11 2025: (Start)
G.f.: A(x) = 1 + x*d/dx(log(G(x)/x)), where G(x) = x - x^2 + x^3 - 4*x^5 + 14*x^6 - 30*x^7 + ... is the g.f. of A103779.
The following formulas hold for n >= 1:
a(n) = [x^n] T(2*n, (1 - x)/2), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = Sum_{k = 0..n} (-1)^(n+k) * n/(2*n-k) * binomial(2*n-k, k)*binomial(2*n-2*k, n).
a(n) = (1/2)*(-1)^n*binomial(2*n, n)*hypergeom([-n/2, (-n+1)/2], [-2*n+1], 4). Cf. A213684. (End)

A362078 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = [x^n] 1/(1 - x*(1+x)^k)^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 7, 22, 35, 1, 1, 9, 37, 105, 126, 1, 1, 11, 55, 215, 511, 462, 1, 1, 13, 76, 369, 1271, 2534, 1716, 1, 1, 15, 100, 571, 2526, 7651, 12720, 6435, 1, 1, 17, 127, 825, 4401, 17577, 46614, 64449, 24310, 1, 1, 19, 157, 1135, 7026, 34412, 123810, 286599, 328900, 92378
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2023

Keywords

Examples

			Square array begins:
    1,   1,    1,    1,    1,    1, ...
    1,   1,    1,    1,    1,    1, ...
    3,   5,    7,    9,   11,   13, ...
   10,  22,   37,   55,   76,  100, ...
   35, 105,  215,  369,  571,  825, ...
  126, 511, 1271, 2526, 4401, 7026, ...
		

Crossrefs

Columns k=0..3 give A088218, A213684, A362087, A362088.
Main diagonal gives A362080.
Cf. A362079.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(n+j-1, j)*binomial(k*j, n-j));

Formula

T(n,k) = Sum_{j=0..n} (-1)^j * binomial(-n,j) * binomial(k*j,n-j) = Sum_{j=0..n} binomial(n+j-1,j) * binomial(k*j,n-j).

A378565 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(n+k-1,n-k).

Original entry on oeis.org

1, 1, 7, 43, 271, 1746, 11425, 75615, 504799, 3392953, 22930282, 155664356, 1060710457, 7250779238, 49700101101, 341474150583, 2351032782783, 16216401440106, 112035931072915, 775163096510445, 5370301986029066, 37249469056575504, 258648802856972348
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+k-1, k] * Binomial[n+k-1, 2*k-1], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Dec 01 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(n+k-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x/(1 - x)^2)^n.
a(n) ~ (525 - 32*210^(2/3)/(157*sqrt(105) - 1575)^(1/3) + 4*(210*(157*sqrt(105) - 1575))^(1/3))^(1/6) * ((36 + (1208682 - 28350*sqrt(105))^(1/3)/3 + (6*(7461 + 175*sqrt(105)))^(1/3))^n / (2^(2/3) * 7^(1/3) * sqrt(Pi*n) * 3^(n + 1/6) * 5^(n + 1/3))). - Vaclav Kotesovec, Dec 01 2024
Showing 1-3 of 3 results.